

Aircraft Flight Manual

Doc. No. 2006/044 4th Edition – Rev. 2 2017, March 16th

TECNAM P2006T

MANUFACTURER: COSTRUZIONI AERONAUTICHE TECNAM S.r.	!.
Δ IR CRAFT MODEL · P2006T	

EASA Type Certificate No: A.185 (DATED 2009, June 5TH)

SERIAL NUMBER:
BUILD YEAR:
REGISTRATION MARKINGS:

This Aircraft Flight Manual is approved by European Aviation Safety Agency (EASA).

This Manual contains information required by the FAA to be furnished to the pilot for operation in the U.S.A. plus information supplied by the manufacturer. It is approved by EASA on behalf of the FAA per FAR 21.29.

This Manual must be carried in the airplane at all times.

The airplane has to be operated in compliance with procedures and limitations contained herein.

Costruzioni Aeronautiche **TECNAM** srl Via Maiorise CAPUA (CE) – Italy Tel. +39 (0) 823.62.01.34

WEB: www.tecnam.com

SECTION 0

INDEX

1.	RECORD OF REVISIONS	3
2.	LIST OF EFFECTIVE PAGES	7
3.	FOREWORD	10
4.	SECTIONS LIST	11

1. RECORD OF REVISIONS

Any revision to the present Manual, except actual weighing data, is recorded: a Record of Revisions is provided at the front of this manual and the operator is advised to make sure that the record is kept up-to-date.

The Manual issue is identified by Edition and Revision codes reported on each page, lower right side.

The revision code is numerical and consists of the number "0"; subsequent revisions are identified by the change of the code from "0" to "1" for the first revision to the basic publication, "2" for the second one, etc.

Should be necessary to completely reissue a publication for contents and format changes, the Edition code will change to the next number ("2" for the second edition, "3" for the third edition etc).

Additions, deletions and revisions to existing text will be identified by a revision bar (black line) in the left-hand margin of the page, adjacent to the change.

When technical changes cause expansion or deletion of text which results in unchanged text appearing on a different page, a revision bar will be placed in the right-hand margin adjacent to the page number of all affected pages providing no other revision bar appears on the page.

These pages will be updated to the current regular revision date.

NOTE: It is the responsibility of the owner to maintain this handbook in a current status when it is being used for operational purposes.

Rev	Revised	Description of	Tecnam Approval			EASA Approval or Under DOA
Kev	page	Revision	DO	OoA	HDO	Privileges
0	-	First issue	D. Ronca	M. Oliva	M. Oliva	
	0-4	Amend ROR	D. Ronca	M. Oliva	M. Oliva	
	0-8	Amend LOEP	D. Ronca	M. Oliva	M. Oliva	
	6-12	Amend Equipment List	D. Ronca	M. Oliva	M. Oliva	
	9-1 & 2	Amend Supplement List Index	D. Ronca	M. Oliva	M. Oliva	
	9-5	Amend Supplement List	D. Ronca	M. Oliva	M. Oliva	Approved under the au-
1	9-7	Amend Supplement List	D. Ronca	M. Oliva	M. Oliva	thority of DOA, ref. EASA.21J.335
	-	Add Supplement A24	D. Ronca	M. Oliva	M. Oliva	(MOD2006/270.160429)
	-	Add Supplement A25	D. Ronca	M. Oliva	M. Oliva	
	-	Add Supplement G14	D. Ronca	M. Oliva	M. Oliva	
	-	Add Supplement G16	D. Ronca	M. Oliva	M. Oliva	
	-	Add Supplement G17	D. Ronca	M. Oliva	M. Oliva	
	4-3, 4	Amend General recommendation	D. Ronca	M. Oliva	M. Oliva	
	4-18, 19	Amend "Prior to Takeoff" procedure	D. Ronca	M. Oliva	M. Oliva	
	5-16	Amend Cruise performances	D. Ronca	M. Oliva	M. Oliva	
2	9-1,2,4,5,7	Amend Supplement List Index	D. Ronca	M. Oliva	M. Oliva	Approved under the authority of DOA,
2	-	Add Supplement A13B	D. Ronca	M. Oliva	M. Oliva	ref. EASA.21J.335 (MOD2006/290.170316)
		Add Supplement A26	D. Ronca	M. Oliva	M. Oliva	, , , , , , , , , , , , , , , , , , ,
	-	Add Supplement A27	D. Ronca	M. Oliva	M. Oliva	
	-	Add Supplement G18	D. Ronca	M. Oliva	M. Oliva	

2. LIST OF EFFECTIVE PAGES

The List of Effective Pages (LOEP), applicable to manuals of every operator, lists all the basic AFM pages: each manual could contain either basic pages or one variant of these pages when the pages of some Supplements are embodied.

Should the Supplements be embodied in accordance with approved instructions, make reference to the LOEP addressed on the Supplements themselves.

1st Edition, Rev 0 May 25, 2009
2nd Edition, Rev 0 March 29, 2010
2nd Edition, Rev 1 April 27, 2010
2nd Edition, Rev 2 November 12, 2010
2nd Edition, Rev 3 March 4, 2011
3rd Edition, Rev 0 December 22, 2011
3rd Edition, Rev 1 October 15, 2012
3rd Edition, Rev 2 June 4, 2013
3rd Edition, Rev 3 February 13, 2014
3rd Edition, Rev 4 May 5, 2014
3rd Edition, Rev 5 June 10, 2015
4 th Edition, Rev 0 July 25, 2015
4 th Edition, Rev 1 April 6, 2016
4 th Edition, Rev 2 March 16, 2017

Section	Pages	Revision	
Section 0	Pages 1 thru 3, 5, 6, 8 trhu 11	Rev 0	
	Pages 4,7	Rev 1	
Section 1	Pages 1 thru 18	Rev 0	
Section 2	Pages 1 thru 32	Rev 0	
Section 3	Pages 1 thru 58	Rev 0	
Section 4	Pages 1,2,5 thru 17 and	Rev 0	
	Pages 20 thru 29		
	Pages 3,4,18, 19	Rev 2	
Section 5	Pages 1 thru 15 and	Rev 0	
	Pages 17 thru 23		
	Page 16	Rev 2	
Section 6	Pages 1 thru 10	Rev 0	
	Pages 11 thru 12	Rev 1	
	Pages 13 thru 14	Rev 0	
Section 7	Pages 1 thru 44	Rev 0	
Section 8	Pages 1 thru 10	Rev 0	
Supplements			
Section 9	Pages 1, 2, 5, 7	Rev 1	
	Pages 3, 4, 6, 8	Rev 0	
Supplements LOEP: make reference to the Supplements Cover Pages			

3. FOREWORD

Tecnam **P2006T** is a twin-engine four-seat aircraft with high cantilevered wing and tricycle retractable landing gear.

Section 1 supplies general information and it contains definitions, symbols explanations, acronyms and terminology used.

Before using the airplane, you are recommended to read carefully this manual: a deep knowledge of airplane features and limitations will allow you for operating the airplane safely.

For further information, please contact:

COSTRUZIONI AERONAUTICHE **TECNAM** s.r.l.

Via MAIORISE

CAPUA (CE) - ITALY

≅ +39 (0) 823.62.01.34 **≤** www.tecnam.com

4. SECTIONS LIST

General Section 1 (a non-approved Chapter)

Limitations Section 2 - **EASA Approved Chapter**

Emergency Procedures Section 3 (a non-approved Chapter)

Normal Procedures Section 4 (a non-approved Chapter)

Performances Section 5 (a non-approved Chapter)

Weight and Balance Section 6 (a non-approved Chapter)

Airframe and Systems description Section 7 (a non-approved Chapter)

Airplane Care and Maintenance Section 8 (a non-approved Chapter)

Supplements Section 9 (*)

(*) EASA approved parts, if any, are reported on the supplements

SECTION 1 - GENERAL

INDEX

1.	Introduction	
	Three-view and dimensions	
	Control Surfaces Travel Limits	
	Engine	
	Propeller	
6.	Governor	7
7.	Fuel	7
8.	Lubrication	7
9.	Cooling	8
10.	. Maximum weights	8
11.	. Standard weights	8
12.	. Specific loadings	8
13.	. Acronyms and terminology	10
14.	Unit conversion chart	15
15.	Litres / US gallons conversion chart	16

1. Introduction

The Aircraft Flight Manual has been implemented to provide the owners with information for a safe and efficient use of the aircraft TECNAM P2006T.

Warning - Caution - Note

Following definitions apply to warnings, cautions and notes used in the Aircraft Flight Manual.

The non-observation of the corresponding procedure can lead, as immediate effect, to a significant reduction of the flight safety.

The non-observation of the corresponding procedure can lead to an equipment damage which leads to a reduction of the flight safety in a short or longer time interval.

Draws the attention to a procedure not directly related to safety of flight.

2. THREE-VIEW AND DIMENSIONS

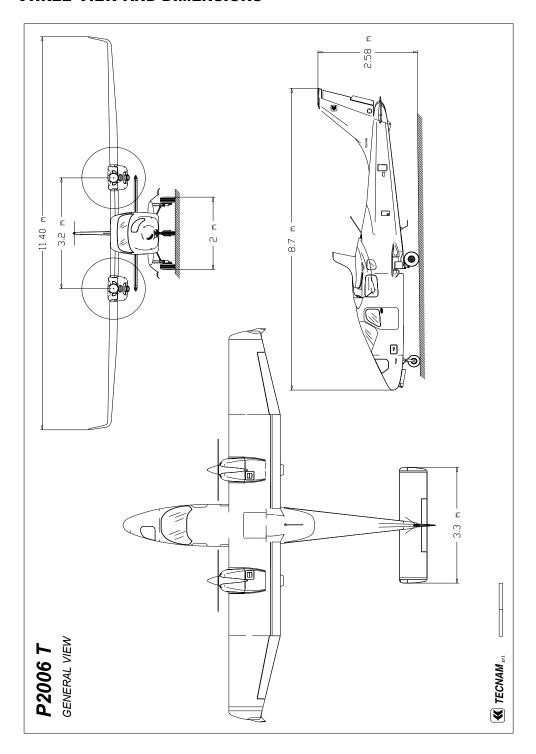


Figure 1 – General views

Dimensions

A 11		•
Overall	dime	nsions

Wingspan	11,4 m	37,4 ft
Length	8,7 m	28,5 ft
Overall height	2,58 m	8,46 ft

Wing

Wing surface	$14,76 \text{ m}^2$	$158,9 \text{ ft}^2$
Mean Geometric Chord	1,295 m	4,25 ft

8,80

1° Dihedral

Main Landing Gear

Aspect ratio

Track	2.0 m
Wheelbase	2.9 m
Tire	6.00-6
**** 1:	D D I 40 50

Wheel rim assembly (Cleveland) P/N 40-59A

Nose Landing Gear

Tire	5.00 – 5
Wheel rim assembly (Cleveland)	P/N 40-77C

3. CONTROL SURFACES TRAVEL LIMITS

Ailerons Up 20° Down 17 ° $(\pm 2^\circ)$

Stabilator (refer to Trailing Edge) Up 4° Down 15° (± 2°)

Stabilator trim tab (refer to Trailing Edge) Up 2°; Down 19° (± 2°)

Rudder RH 26° LH 26° $(\pm 2^{\circ})$

Rudder trim tab RH 20° LH 20° (± 2°)

Flaps $0^{\circ}; 40^{\circ} (-2^{\circ})$

4. ENGINE

Manufacturer Bombardier-Rotax GmbH

Model 912 S3

Certification basis FAR 33 - Amendment 15

Type Certificate EASA TCDS no. E.121 dated 1 April

2008

Engine type 4 cylinders horizontally opposed with

1352 c.c. of overall displacement, liquid cooled cylinder heads, ram-air cooled cylinders, two carburetors, integrated reduction gear box with torsional shock ab-

sorber and overload clutch.

Maximum power (at declared rpm) 73.5 kW (98.6hp) @ 5800 rpm -5

minutes maximum.

69.0 kW (92.5hp) @ 5500 rpm (continu-

ous)

5. Propeller

Manufacturer MT Propeller

Type Certificate LBA 32.130/086 (MTV-21 series)

Model MTV-21-A-C-F/CF178-05

Blades/hub 2 wood/composite blades – aluminum

hub

Diameter 1780 mm (no reduction allowed)

Type Variable pitch - hydraulically controlled

6. GOVERNOR

Manufacturer Mt Propeller
Model P-875-12
Type Hydraulic

7. FUEL

Approved fuel: MOGAS ASTM D4814

MOGAS EN 228 Super/Super plus

(min. RON 95)

AVGAS 100LL (ASTM D910)

(see also Section 2)

Fuel tanks Two integrated tanks (one in each

wing) fitted with drainable sump

and drain valve

Capacity of each wing tan 100 litres (26,42 US gallons)

Tanks overall capacity 200 litres (52,8 US gallons)

Overall usable fuel 194.4 litres (51,35 US gallons)

Overall unusable fuel 5.6 litres (1,48 US gallons)

8. LUBRICATION

Lubrication system Forced type with external reservoir

Oil Use only oil with API classification "SG"

or higher. For additional info, refer to "Rotax Operators Manual" – last issue -, "Op-

erating Media" Section.

Oil capacity Max. 3.0 litres – min. 2.0 litres (per

tank)

9. Cooling

Cooling system Ram-air cooled cylinders, liquid

cooled cylinder heads (closed and

pressurized circuit)

Coolant liquid Certified for Water/Coolant mixture.

Make reference to "Rotax Operators

Manual" – last issue

Overall circuit capacity 1410 cm³

10. WEIGHTS

See Section 2.

11. STANDARD WEIGHTS

Empty Weight: see weighing record on Section 6

12. SPECIFIC LOADINGS

	MTOW 1180 kg (2601 lb)	MTOW 1230 kg (2712 lb)
Wing Loading	80 kg/m ² (16,37 lb/sqft)	83 kg/m ² (17,1 lb/sqft)
Power Loading	6.0 kg/hp (13,26 lb/hp)	6.28 kg/hp (13,84 lb/hp)

NOTE. Reference is made to both MTOW: 1180 kg and 1230 kg (if Supplement A19 or G10 - Increased MTOW @1230 KG - is applicable).

13. ACRONYMS AND TERMINOLOGY

KCAS <u>Calibrated Airspeed</u> is the indicated airspeed expressed in kn corrected taking into account the errors related to the instrumitself and its installation.	
KIAS <u>Indicated Airspeed</u> is the speed shown on the airspeed indicated and it is expressed in knots.	itor
KTAS <u>True Airspeed</u> is the KCAS airspeed corrected taking into count altitude and temperature.	ac-
V _A <u>Design Manoeuvring speed</u> is the speed above the which it is allowed to make full or abrupt control movement.	not
V _{FE} <u>Maximum Flap Extended speed</u> is the highest speed permissi with flaps extended.	ble
V _{LO} <u>Maximum Landing Gear Operating speed</u> is the maximum sp allowed to retract or to extend the landing gear.	eed
V _{LE} <u>Maximum Landing Gear Extended speed</u> is the maximum sp allowed with the landing gear extended.	eed
V _{MC} <u>Minimum control speed</u> : is the minimum speed necessary to sure an efficient aircraft control in case of one engine inope tive.	
V _{NO} <u>Maximum Structural Cruising Speed</u> is the speed that should be exceeded, except in smooth air and only with caution.	not
V _{NE} Never Exceed Speed is the speed limit that may not be excee at any time.	ded
V _O Operating Manoeuvring speed is the speed above the which is not allowed to make full or abrupt control movement	t is
V _S <u>Stall Speed.</u>	
V_{S0} <u>Stall Speed in landing configuration</u> (flaps and landing gear tended).	ex-
V _{S1} Stall speed in the given flap and landing gear configuration.	
V _{SSE} Recommended safe simulated OEI speed is the minimum sp at which simulated OEI training operation should be executed	
V _X <u>Best Angle-of-Climb Speed</u> is the speed which allows best raclimb performances.	mp
V _Y <u>Best Rate-of-Climb Speed</u> is the speed which allows the begain in altitude over a given time.	est
V _R Rotation speed: is the speed at which the aircraft rotates ab the pitch axis during takeoff	out
V _{YSE} Best Rate-of-Climb speed in case of one engine inoperative.	

Meteorological terminology

ISA	International Standard Atmosphere: is the air atmospheric standard condition at sea level, at 15°C (59°F) and at 1013.25hPa (29.92inHg).
QFE	Official atmospheric pressure at airport level: it indicates the aircraft absolute altitude with respect to the official airport level.
QNH	<u>Theoretical atmospheric pressure at sea level:</u> is the atmospheric pressure reported at the medium sea level, through the standard air pressure-altitude relationship, starting from the airport QFE.
OAT	$\frac{Outside\ Air\ Temperature}{degrees\ Celsius\ (^{\circ}C)}.$
T_S	Standard Temperature is 15°C at sea level pressure altitude and decreased by 2°C for each 1000 ft of altitude.
H_{P}	<u>Pressure Altitude</u> is the altitude read from an altimeter when the barometric subscale has been set to 1013 mb.

Aircraft performance and flight planning terminology

Crosswind Velocity is the velocity of the crosswind component

for the which adequate control of the air-

plane during takeoff and landing is assured.

Usable fuel is the fuel available for flight planning.

Unusable fuel is the quantity of fuel that cannot be safely

used in flight.

G is the acceleration of gravity.

TOR is the takeoff distance measured from actual

start to wheel liftoff point.

TOD is total takeoff distance measured from start

to 15m obstacle clearing.

GR is the distance measured during landing

from actual touchdown to stop point.

LD is the distance measured during landing,

from 15m obstacle clearing to actual stop.

S/R is the specific range, that is the distance (in

nautical miles) which can be expected at a specific power setting and/or flight configu-

ration per kilogram of fuel used.

Weight and balance terminology

Datum "Reference datum" is an imaginary vertical

plane from which all horizontal distances are

measured for balance purposes.

Arm is the horizontal distance of an item meas-

ured from the reference datum.

Moment is the product of the weight of an item mul-

tiplied by its arm.

C.G. Center of Gravity is the point at which the

airplane, or equipment, would balance if suspended. Its distance from the reference datum is found by dividing the total moment

by the total weight of the aircraft.

Standard Empty Weight is the weight of the aircraft with engine flu-

ids and oil at operating levels.

Basic Empty Weight is the standard empty weight to which it is

added the optional equipment weight.

Useful Load is the difference between maximum takeoff

weight and the basic empty weight.

Maximum Takeoff Weight is the maximum weight approved to perform

the takeoff.

Maximum Landing Weight is the maximum weight approved for the

landing touchdown (for *P2006T* it is equivalent to the Maximum Takes of Weight)

alent to the Maximum Takeoff Weight).

14. Unit conversion chart

MOLTIPLYING		BY →	YIELDS	
TEMPERATURE Fahrenheit Celsius	[°F]	$\frac{5}{9} \cdot (F - 32)$ $\left(\frac{9}{5} \cdot C\right) + 32$	Celsius Fahrenheit	[°C] [°F]
FORCES				
Kilograms	[kg]	2.205	Pounds	[lbs]
Pounds	[lbs]	0.4536	Kilograms	[kg]
SPEED				
Meters per second	[m/s]	196.86	Feet per minute	[ft/min]
Feet per minute	[ft/min]	0.00508	Meters per second	[m/s]
Knots	[kts]	1.853	Kilometres / hour	[km/h]
Kilometres / hour	[km/h]	0.5396	Knots	[kts]
PRESSURE				
Atmosphere	[atm]	14.7	Pounds / sq. in	[psi]
Pounds / sq. in	[psi]	0.068	Atmosphere	[atm]
LENGTH				
Kilometres	[km]	0.5396	Nautical miles	[nm]
Nautical miles	[nm]	1.853	Kilometres	[km]
Meters	[m]	3.281	Feet	[ft]
Feet	[ft]	0.3048	Meters	[m]
Centimetres	[cm]	0.3937	Inches	[in]
Inches	[in]	2.540	Centimetres	[cm]
VOLUME				
Litres	[1]	0.2642	U.S. Gallons	[US Gal]
U.S. Gallons	[US Gal]	3.785	Litres	[1]
AREA				
Square meters	$[m^2]$	10.76	Square feet	[sq ft]
Square feet	[sq ft]	0.0929	Square meters	$[m^2]$

15. LITRES / US GALLONS CONVERSION CHART

Litres	US Gallons
5	1.3
10	2.6
15	4.0
20	5.3
25	6.6
30	7.9
35	9.2
40	10.6
45	11.9
50	13.2
60	15.9
70	18.5
80	21.1
90	23.8
100	26.4
110	29.1
120	31.7
130	34.3
140	37.7
150	39.6
160	42.3
170	44.9
180	47.6
190	50.2
200	52.8

US Gallons	Litres
1	3.8
2	7.6
3	11.4
4	15.1
6	22.7
8	30.3
10	37.9
12	45.4
14	53.0
16	60.6
18	68.1
20	75.7
22	83.3
24	90.9
26	98.4
28	106.0
30	113.6
32	121.1
34	128.7
36	136.3
38	143.8
40	151.4
45	170.3
50	189.3
55	208.2

SECTION 2 – LIMITATIONS

INDEX

1.	Introduction	3
2.	Speed limitations	5
3.	Airspeed indicator markings	7
4.	Powerplant limitations	9
5.	Lubricant	. 10
6.	Coolant liquid	. 10
7.	Propeller	. 10
8.	Governor	. 10
9.	Maximum operating altitude	. 11
10 .	Ambient temperature	. 11
11.	Powerplant instruments markings	. 12
12.	Other instruments markings	
13 .	Warnings, cautions and advisories lights	. 13
14.	Weights	. 15
15.	Center of gravity range	. 17
16.	Approved maneuvers	. 19
17 .	Maneuvers load factor limits	. 19
18.	Flight crew	. 19
19.	Flight conditions	. 20
20.	Fuel	. 20
21.	Limitations placards	. 21
21.1	L. Speed limitations	. 21
21.2	2. Operating limitations	. 22
21.3	3. Inflight engine restart	. 23
21.4	4. Baggage compartment capacity	. 23
21.5	5. Engine oil level	. 24
21.6	5. Fuel type	. 24
21.7	7. Landing Gear Hydraulic System	. 25
21.8	3. Rear seats	. 26
21.9	9. Other placards	. 27
22.	Kinds of Operations Equipment List	. 29

INTRODUCTION

Section 2 includes operating limitations, instrument markings and basic placards necessary for safe operation of P2006T aircraft, its engines and standard systems and equipment.

This AFM Section is EASA approved.

P2006T - Aircraft Flight Manual

2 SPEED LIMITATIONS

The following table addresses the airspeed limitations and their operational significance:

SPEED		KIAS	KCAS	REMARKS	
V _{NE}	Never exceed speed		171	172	Do not exceed this speed in any operation.
V _{NO}	Maximum Structural Cruising Speed		138	136	Do not exceed this speed except in smooth air, and only with caution.
V _A	Design Manoeuvring speed		122	119	Do not make full or abrupt control movement above
v _O	Operating Manoeuvring speed				this speed, because under certain conditions the air-craft may be overstressed by full control movement.
V _{LE}	Maximum Landing Gear extended speed		93	93	Do not exceed this speed with the landing gear extended.
V _{LO}	Maximum Landing Gear operating speed		93	93	Do not exceed this speed when operating the landing gear.
V _{FE}	V _{FE} Maximum flaps extended speed	FULL	93	93	Do not exceed this speed
		<i>T.O.</i>	122	119	for indicated flaps setting.
V _{MC}	Aircraft minimum control speed with one engine inoperative		62	62	Do not reduce speed below this value in event of one engine inoperative condi- tion.

P2006T - Aircraft Flight Manual

Page SW2-6

3 AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their colour code are explained in the following table

MARKING	KIAS	EXPLANATION
White band	54-93	Lower limit is V_{SO} , upper limit is the maximum allowable speed with flaps extended in FULL position.
Red line	62	Minimum aircraft control speed with one engine inoperative and flaps set to T.O.
Green band	66-138	Normal aircraft operating range (lower limit is $V_{\rm S1}$, stall speed in "clean" configuration, and upper limit is the maximum structural cruise speed $V_{\rm NO}$).
Blue line	84	Best rate-of-climb speed with one engine in- operative at sea level.
Yellow band	138-171	Speed range where manoeuvres must be conducted with caution and only in smooth air.
Red line	171	Maximum speed for all operations.

Page SW2-8

INTENTIONALLY LEFT BLANK

4. POWERPLANT LIMITATIONS

Following table reports the operating limitations for both engines installed:

ENGINE MANUFACTURER: Bombardier Rotax GmbH.

ENGINE MODEL: 912 S3 MAXIMUM POWER:

	Max Power kW (hp)	Max rpm. Prop. rpm <i>(engine)</i>	Time max. (minutes)
Max. T.O.	73.5 (98.6)	2388 (5800)	5
Max. Cont.	69 (92.5)	2265 (5500)	-

Temperatures:

 Max CHT*
 135° C

 Max CT
 120° C

Min/Max Oil 50° C / 130° C Oil normal operating range (approx.) 90° C / 110° C

Oil Pressure:

Minimum 0.8 Bar / 12 psi (below 1400 rpm prop) Normal 2 - 5 Bar / 29 - 73 psi (above 1400 rpm prop) Maximum 7 Bar / 102 psi (above 1400 rpm prop)

Engine starting: allowable temperature range

OAT Min -25° C OAT Max +50° C

In event of cold starting operation, it is permitted a maximum oil pressure of 7 bar for a short period.

^{*} applicable for Engines up to serial no. 4924543(included) and repaired engine which doesn't change the cylinder head n°3 with new one (part no. 413195)

Fuel pressure:

Minimum 2.2 psi (0.15 Bar)

Maximum 5.8 psi (0.40 Bar) or 7.26 psi* (0.5 Bar)

5. LUBRICANT

Use only oil with API classification "SG" or higher.

For additional info, refer to "Rotax Operators Manual" – last issue -, "Operating Media" Section.

6. COOLANT LIQUID

Refer to "Rotax Operators Manual" – last issue -, "Operating Media" Section.

7. PROPELLER

MANUFACTURER: MT Propeller

MODEL: MTV-21-A-C-F-/CF178-05

TYPE: wood/composite 2-blade, variable pitch hydraulically con-

trolled and fully featherable

DIAMETER: 1780 mm (no reduction is permitted)

8. GOVERNOR

MANUFACTURER: MT Propeller MODEL: P-875-12

OPERATION: Hydraulically controlled (oil pressure to reduce the

pitch)

^{*}only applicable for fuel pump part no. 893110 or 893114

9. MAXIMUM OPERATING ALTITUDE

Maximum operating altitude is 14000 ft (4260 m) MSL.

At altitudes above 12500 ft (3810 m) up to and including 14000 ft (4260 m), flight must be limited to 30 minutes, unless the required minimum flight crew is provided with and uses supplemental oxygen for that part of the flight at those altitudes that is of more than 30 minutes duration.

10. AMBIENT TEMPERATURE

Ambient temperature: from -25°C to +50°C.

Flight in expected and/or known icing conditions is forbidden.

11. POWERPLANT INSTRUMENTS MARKINGS

Powerplant instrument markings and their colour code significance are shown be-

Instrum	MENT	RED LINE Minimum limit	GREEN ARC Normal operating	YELLOW ARC Caution	RED LINE Maximum limit
Propeller	rpm		580 - 2265	2265 - 2388	2388
Oil temp.	°C	50	90 - 110	50 - 90 110 - 130	130
CT	°C		50 – 120		120
CHT ¹	°C		50 – 135		135
Oil pressure	bar	0.8	2 - 5	0.8 - 2 5 - 7 ⁽²⁾	7
Fuel press.	psi	2.2	2.2 - 5.8 or 7.2 ³		5.8 or 7.2 ³
Fuel Q.ty	litres	0 ⁽⁴⁾			

12. OTHER INSTRUMENTS MARKINGS

Instrument	RED LINE	GREEN ARC	YELLOW ARC	RED LINE
	Minimum limit	Normal operating	Caution	Maximum limit
Voltmeter	10,5 Volt	12 - 14 Volt		

EASA Approved 4th Edition, Rev. 0

¹ applicable for Engines up to serial no. 4924543(included) and repaired engine which doesn't change the cylinder head n°3 with new one (part no. 413195)

²⁻ In event of cold starting operation, it is permitted a maximum oil pressure of 7 bar for a short period.

³⁻ only applicable for fuel pump part no. 893110 or 893114

^{4 - &}quot;0" indication shows the unusable fuel quantity (2,8 litres for each fuel tank).

13 Warning/caution alerts and safe operating annunciations

Following table addresses the warning and caution alerts and safe operating annunciations shown (unless differently specified) on the Annunciation Window:

Warning alert (RED)	Cause
L BUS VOLT HIGH	LH electric system overvoltage
R BUS VOLT HIGH	RH electric system overvoltage
L COOLANT LOW	Left engine - coolant liquid low level
L COOLANT LOW	Right engine - coolant liquid low level
PILOT DR OPEN	Main door open and/or unlocked
REAR DR OPEN	Rear door open and/or unlocked
LH ENGINE FIRE	Left engine compartment: fire detected
RH ENGINE FIRE	Right engine compartment: fire detected
LG TRANSITION (warning light installed near the landing gear control lever)	One or more legs are in transition phase and/or the selected retracted/extended position is not yet reached.
Caution alert (AMBER)	Cause
L ALT FAIL	LH generator failure
R ALT FAIL	RH generator failure
PITOT HEAT	Pitot heating system failure/not activated
EXT POWER ON	External electrical supply connected
GEAR PUMP ON	LG pump electrically supplied
Safe operating annunciation (GREEN)	Indication
L FUEL PUMP ON	Left engine - electrical fuel pump ON
R FUEL PUMP ON	Right engine - electrical fuel pump ON
PITOT HEAT ON	Pitot heating system ON
LG Down & Locked (3 advisory lights, one for each leg, installed near the landing gear control lever)	Landing gear extended and locked

GARMIN G950 IFDS - Supplement

P2006T - Aircraft Flight Manual

Page S2 - 14

Aural means are provided by Garmin G950 System: a repeating tone is associated to the warning alerts and a single chime is associated to the caution alerts. Safe operating annunciations do not have any aural chime generated.

Make reference to Garmin G950 Pilot's Guide for P2006T, last issue, "Annunciations and alerts" (Appendix A).

Page SW2-15

14 WEIGHTS

Condition	Weight	
Maximum takeoff weight	1230 kg	2712 lb
Maximum landing weight	1230 kg	2712 lb
Maximum zero wing fuel weight	1195 kg	2635 lb

Refer to Para. 21.4 of this AFM Section for baggage loading limitations.

P2006T - Aircraft Flight Manual Page SW2-16

INTENTIONALLY LEFT BLANK

15. CENTER OF GRAVITY RANGE

Datum Vertical plane tangent to the wing leading edge (the aircraft

must be levelled in the longitudinal plane)

Levelling Refer to the seat track supporting beams (see procedure in

Section 6)

Forward limit 0.221 m (16.5% MAC) aft of datum for all weights

Aft limit 0.415 m (31% MAC) aft of datum for all weights

The pilot is responsible for ensuring that the airplane is properly loaded. Refer to Section 6 for appropriate instructions.

INTENTIONALLY LEFT BLANK

16. APPROVED MANEUVERS

The aircraft is certified in normal category in accordance with EASA CS-23 regulation.

Non aerobatic operations include:

- Any manoeuvre pertaining to "normal" flight
- Stalls (except whip stalls)
- Lazy eights
- Turns in which the angle of bank is not more than 60°
- Chandelle

Acrobatic manoeuvres, including spins and turns with angle of bank of more than 60°, are not approved for such a category. In addition, stall with one engine inoperative is forbidden.

Limit load factor could be exceeded by moving flight controls to maximum deflection at a speed above $V_A=V_O$ (118 KIAS, Manoeuvring Speed).

17. MANEUVERS LOAD FACTOR LIMITS

Maneuver load factors limits are as follows:

Positive Negative + 3.8 g - 1.78 g

Maneuver load factors limits with flaps extended are as follows:

18. FLIGHT CREW

Minimum crew: 1 pilot

Maximum number of occupants: 4 people (including the pilot)

19. FLIGHT CONDITIONS

The aircraft can be equipped for following flight operations (make reference to Para. 22 concerning the equipment list required on board to allow them):

• VFR Day and Night

• IFR Day and Night including IMC

Flight in expected and/or known icing conditions, in proximity of storms or in turbulence is forbidden.

Additional equipment can be required to fulfil national or specific operational requirements. The owner is responsible for fulfilling these requirements.

Equipment list is addressed in Section 6.

20. FUEL

2 TANKS: 100 litres each one (26,42 US gallons)

MAXIMUM CAPACITY: 200 litres (52,8 US gallons)

MAXIMUM USABLE FUEL: 194.4 litres (51,35 US gallons)

APPROVED FUEL: MOGAS ASTM D4814

MOGAS EN 228 Super/Super plus (min. RON 95)

AVGAS 100 LL (ASTM D910)

Prolonged use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. It is therefore suggested to avoid using this type of fuel unless strictly necessary. Make reference to Rotax Maintenance Manual which prescribes dedicated checks due to the prolonged use of Avgas.

21. LIMITATIONS PLACARDS

Hereinafter the placards, related to the operating limitations and installed on **P2006T**, are reported.

21.1. SPEED LIMITATIONS

On the left side instrument panel, the following placards reporting the speed limitations are placed:

Operating Manoeuvring speed $V_o = 122KIAS$

Maximum L.G. op. speed V_{Lo}/V_{LE} 93KIAS

Speed limitations placard for MTOW @1230 kg (2712 lb)

Page SW2-22

21.2. OPERATING LIMITATIONS

On the instrument panel, it is placed the following placard reminding the observance of aircraft operating limitations; make reference to Para. 22 for the list of equipment required on board to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

This A/C can be operated only in normal category DAY-NIGHT-VFR-IFR (with required equipment) in non-icing conditions. All aerobatics manoeuvres including spinning are prohibited. For operational limitations refer to FLIGHT MANUAL

21.3. INFLIGHT ENGINE RESTART

The inflight engine restart procedure is reported on a placard (shown below) installed on the central console.

INFLIGHT ENGINE RESTART

1) Fuel Pump ON & normal engine starting

21.4. BAGGAGE COMPARTMENT CAPACITY

The placard shown below, and installed on the baggage compartment (vertical panel), concerns the baggage compartment load limitations herein reported:

- Maximum allowable load: 80kg/176lb
- Maximum intensity of loading: 0.9 kg/dm² 19 lbs/sqft

21.5. ENGINE OIL LEVEL

On the engine nacelle, in correspondence of the engine oil reservoir access door, it is located the following placard addressing the limitations concerning the oil level, the oil volume and the oil type.

USE ONLY OIL WITH API CLASSIFICATION SG OR HIGHER

21.6. FUEL TYPE

In correspondence of each fuel tank filler cap, it is located the following placard reporting the approved fuel type and the tank usable fuel.

MOGAS ASTM D4814-EN 228 SUPER/SUPER PLUS (min. RON 95) AVGAS 100LL (ASTM D910)

97 LITERS (25.6 U.S. GALS.) TOTAL USABLE CAPACITY

21.7. LANDING GEAR HYDRAULIC SYSTEM

The placard shown below, and located on the tail cone, concerns the allowed low pressure limit for the landing gear emergency accumulator.

The low pressure limit is 20 bar.

If during pre-flight inspection the value is below **20 bar**, the system must be recharged by means of the override button (see Section 7, Para. 9).

LOW PRESSURE LIMIT

20 BAR

21.8. REAR SEATS

During Taxi, Take OFF, Landing (including Emergency Landing), both rear seats must be kept in the lowest and full aft position.

The following placard is located aside both rear seats.

Rear seats must be kept in lowest and full aft position during Taxi, Take Off, Landing and Emergency Landing

21.9. **OTHER PLACARDS**

Description	Placard	Place
Smoking ban	NO SMOKING	Instruments panel, right side
Ditching emergency exit: opening instructions	TIX3	Ditching emergency exit handle: internal side
Ditching emergency exit: opening instructions	TIX3	Ditching emergency exit handle: external side
Door locking system: by- pass instruc- tions	FOR EMERGENCY ACCESS 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emergency exit: external side
Door locking system: by- pass instruc- tions	FOR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emergency exit: internal side
Main door: exit instructions	WARNING VERIFY PROPELLER STOPPED BEFORE OPENING DOOR EXIT TOWARDS FRONT OF AIRCRAFT	Main door, internal side
Emergency exit label	EMERGENCY EXIT	Emergency exit: internal and external side

INTENTIONALLY LEFT BLANK

P2006T - Aircraft Flight Manual Page S2 - 29

22. KINDS OF OPERATIONS EQUIPMENT LIST

This paragraph reports the KOEL table, concerning the equipment list required on board under CS-23 regulations to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

Flight in VFR Day and Night, IFR Day and Night is permitted only if the prescribed equipment is installed and operational.

Additional equipment, or a different equipment list, for the intended operation may be required by national operational requirements and also depends on the route to be flown.

Page S2 - 30

Equipment	VFR Day	VFR Night	IFR Day	IFR Night
Magnetic compass	•	•	•	•
GDU 1040 - Display Unit (2)	•	•	•	•
GIA 63W - Integrated Avionics Unit (2)	•	•	•	•
GDC 74A - Air Data Computer	•	•	•	•
GTP 59 - OAT sensor	•	•	•	•
GRS 77 - AHRS	•	•	•	•
GMU 44 - Magnetometer	•	•	•	•
GMA 1347 - Audio panel/Marker beacon	•	•	•	•
GTX 33 - Transponder	•	•	•	•
Standby Airspeed indicator	•	•	•	•
Standby Attitude indicator (electric)	•	•	•	•
StandbyAltimeter	•	•	•	•
Pitot heating system	•	•	•	•
Clock	•	•	•	•
Breakers panels	•	•	•	•
First Aid kit	•	•	•	•
Fire extinguisher	•	•	•	•
Fire detectors (2)	•	•	•	•
Instruments lights	•	•	•	•
Position lights	•	•	•	•
Landing light	•	•	•	•
Taxi light	•	•	•	•
Strobe lights	•	1	•	
Torch	•	•	•	•
		1		
Cabin light		•	•	•
Cockpit lights	_	•	•	•
Emergency light Volt-Ammeter	•	•	•	•
	•	•	•	•
LG position and transition lights ELT	•	•	•	•
	•	•	•	•
Alternate static source	•	•	•	•
MAP indicator (dual)	•	•	•	•
RPM indicator (2)	•	•	•	•
Oil pressure indicator (2)	•	•	•	•
Oil temperature indicator (2)	•	•	•	•
CHT (2)	•	•	•	•
Fuel pressure indicator (2)	•	•	•	•
Fuel quantity indicator (2)	•	•	•	•
Longitudinal trim indicator	•	•	•	•
Rudder trim indicator Flaps position indicator	•	•	•	•
1 1	•	•	•	•
Stall warning system	•	•	•	•
DME			•	•
ADF			•	•
	VFR Day	VFR Night	IFR Day	IFR Night

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

SECTION 3 - EMERGENCY PROCEDURES

INDEX

1.	INTRODUCTION	3
1.1.	Engine failure during takeoff run	3
2.	Airplane alerts	. 6
2.1	Single alternator failure / overvoltage	. 7
2.2	Both alternators failure	8
2.3	Both alternators overvoltage	9
2.4	Failed door closure	10
2.5	Pitot heating system failure	11
2.6	Coolant liquid low level	12
2.7	Gear Pump failure	13
2.8	Engine fire	14
2.9	Loss of information displayed	15
2.10	Loss of airspeed information	15
2.10	DLoss of attitude information	16
2.11	Loss of altitude information	16
2.12	2Loss of vertical speed information	17
2.13	BLoss of heading information	17
2.14	4Display failure	19
_		
3.	ENGINE SECURING	21
4.	POWERPLANT EMERGENCIES	
	Propeller overspeeding	
	CHT limit exceedance	
4.3	Oil temperature limit exceedance	25
4.4	Oil pressure limits exceedance	26
4.5	Low fuel pressure	27
	ther emergencies	
	Emergency descent	
	Total electrical failure	
	Static ports failure	
	Unintentional flight into icing conditions	
	Carburettor icing	
5.6	Flaps control failure	33
6	ONE ENGINE INOPERATIVE PROCEDURES	34
6.1	Characteristic airspeeds with one engine inoperative	35
6.2	Inflight engine restart	36
6.3	Engine failure during takeoff run	37
6.4	Engine failure during climb	39
6.5	Engine failure in flight	40
	One engine inoperative landing	

7	LANDING GEAR SYSTEM FAILURES	42
7.1	Emergency landing gear extension	42
7.2	Complete Gear up or nose gear up landing	43
	Partial Main LG extension	
7.4	Failed retraction	47
	Unintentional landing gear extension	
8	SMOKE AND FIRE OCCURRENCE	49
8.1	Engine fire on the ground	49
8.2	Engine fire during takeoff run	50
8.3	Engine fire in flight	52
8.4	Electrical smoke in cabin on the ground	52
8.5	Electrical smoke in cabin during flight	53
9	UNINTENTIONAL SPIN RECOVERY	55
10	LANDING EMERGENCIES	56
10.	1Landing without engine power	56
10.	2Landing with Nose landing gear tire deflated	58
10.3	3Landing with a known main landing gear tire deflated	59
10.4	4Landing without brakes	60
11	AIRCRAFT EVACUATION	61
12	DITCHING	62

1. INTRODUCTION

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

Before operating the aircraft, the pilot should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self study should be done.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1. ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

1. Throttle Lever

2. Rudder

3. --

4 --

BOTH IDLE Keep heading control

b. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

Additionally operating the aircraft, the pilot should become thoroughly familiar with the Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - and, in particular, with the present AFM Section.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

Page S3 - 4

Garmin G950 has a very high degree of functional integrity. However, the pilot must recognize that providing monitoring and/or self-test capability for all conceivable system failures is not practical. Although unlikely, it may be possible for erroneous operation to occur without a fault indication shown by the G950. It is thus the responsibility of the pilot to detect such an occurrence by means of crosschecking with all redundant or correlated information available in the cockpit.

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

- 1. Keep self-control and maintain aircraft flight attitude and parameters
- 2. Analyse the situation identifying, if required, the area for a possible emergency landing
- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control as applicable

For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

In this Chapter, following definitions apply:

Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured.

Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.

Page S3 - 5

INTENTIONALLY LEFT BLANK

Page S3 - 6

2. AIRPLANE ALERTS

Annunciation Window, located to the right of the Altimeter and Vertical Speed Indicator, supplies 16 alerts for warnings and cautions along with safe operating annunciations. The colours are as follows:

GREEN: to indicate that pertinent device is turned ON

AMBER: to indicate no-hazard situations which have to be considered and

which require a proper crew action

RED: to indicate emergency conditions

Warning alert text is shown in red in the Annunciation Window and is accompanied by a continuous chime and a flashing WARNING Softkey annunciation. Selecting the WARNING Softkey acknowledges the presence of the warning alert and stops the aural chime.

Caution alert text is shown in yellow in the Annunciation Window and is accompanied by a single chime and a flashing CAUTION Softkey annunciation. Selecting the CAUTION Softkey acknowledges the presence of the caution alert. Caution voice alerts repeat three times or until acknowledged by selecting the CAUTION Softkey.

All aircraft annunciations can be displayed simultaneously in the Annunciation Window. A white horizontal line separates annunciations that are acknowledged from annunciations that are not yet acknowledged. Higher priority annunciations are displayed towards the top of the window.

In order to give a short description about the airplane alerts, text messages are displayed on the Alerts Window: pressing the ALERTS Softkey displays the Alerts Window, pressing the ALERTS Softkey a second time removes the Alerts Window from the display. When the Alerts Window is displayed, the FMS knob can be used to scroll through the alert message list.

2.1 SINGLE ALTERNATOR FAILURE / OVERVOLTAGE

Annunciation window	Alert window	
L ALT FAIL	Lh Alternator	

OR

R ALT FAIL	Rh Alternator

FIELD LH (or RH)
 FIELD LH (or RH)

ON

If the LH (or RH) ALT caution stays displayed

 3. FIELD LH (or RH)
 OFF

 4. Avionic LH
 OFF

 5. ADF
 OFF

Switching OFF avionic LH and ADF will permit to shed non-essential electrical power.

The battery and a single generator are able to supply the electrical power necessary for flight, but redundancy is lost.

If conditions permit:

Switching CROSS BUS OFF will further reduce alternator load; the decision mainly depends on weather conditions.

6. CROSS BUS LH (or RH)

OFF

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

^{*} AHRS /ADC are fed from battery bus if Mod 2006/135 is embodied

7. Land as soon as practicable

2.2 BOTH ALTERNATORS FAILURE

Alternator
Alternator

In event of both L and R ALT FAIL caution alerts displayed:

1. FIELD LH and RH BOTH OFF

2. FIELD LH and RH BOTH ON

If the LH (or RH) ALT caution stays displayed

- 1. Verify good ammeter indications on restored alternator
- 2. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH ALT cautions stay displayed

3. FIELD LH and RH BOTH OFF

4. CROSS BUS LH and RH BOTH OFF

If engine starting battery modification is applied

5. EMERG BATT switch ON

6. Land as soon as possible.

If engine starting battery modification is not applied

5. Land as soon as possible.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

AHRS/ADC are fed from battery bus if Mod 2006/135 is embodied

NOTE

The battery can supply electrical power for at least 30 minutes.

2.3 BOTH ALTERNATORS OVERVOLTAGE

Annunciation window	Alert window
L BUS VOLT HIGH	Lh overvoltage
R BUS VOLT HIGH	Rh overvoltage

In event of both L and R BUS VOLT HIGH warning alerts displayed:

1. FIELD LH and RH BOTH OFF

2. FIELD LH and RH BOTH ON (one at a time)

If the LH (or RH) BUS VOLT HIGH warning is still displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning are still displayed

CROSS BUS LH and RH
 FIELD LH and RH
 BOTH OFF

5. FIELD LH and RH BOTH ON (one at a time)

If LH (or RH) BUS VOLT HIGH warning is still displayed

- 6. Verify good ammeter indications on restored alternator
- 7. Switch CROSS BUS on the restored alternator side
- 8. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning are still displayed

6. FIELD LH and RH BOTH OFF

If engine starting battery modification is applied

7. EMERG BATT switch ON

8. Land as soon as possible.

If engine starting battery modification is not applied

7. Land as soon as possible

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

AHRS /ADC are fed from battery bus if Mod 2006/135 is embodied

NOTE The battery can supply electrical power for at least 30 minutes.

4th Edition, Rev. 0

Page S3 - 10

2.4 FAILED DOOR CLOSURE

Annunciation window	Alert window	
PILOT DR OPEN Main door open		
OR		
REAR DR OPEN	Rear door open	

In case of door opening / unlocking, related PILOT or REAR DR OPEN alert is displayed. In this case, apply following procedure:

ON THE GROUND

Passengers and crew seat belts Fasten and tighten
 Affected door Verify correctly closed

If door is open

3. Relevant engine Shut down

4. Affected door *Close and check*

If door is closed

3. Locking device Check

If down in unlocked position

4. Abort mission.

IN FLIGHT

Passengers and crew seat belts Fasten and tighten
 Affected door and locked device Verify correctly closed

If door is open or locking device is unlocked

3. Land as soon as possible

2.5 PITOT HEATING SYSTEM FAILURE

Annunciation window	Alert window
PITOT HEAT ON	Pitot heat
PITOT HEAT	Pitot heat

When the Pitot Heating system is activated, the green PITOT HEAT advisory light is turned ON.

If the amber PITOT HEAT caution light turns OFF, then the Pitot Heating system is functioning properly. Anytime the amber PITOT HEAT caution light is ON at the same time the green PITOT HEAT light is ON, then the Pitot Heating system is not functioning properly.

- 1. Pitot heat switch OFF
- 2. Verify Pitot Heating circuit breaker is IN
- 3. Pitot heat switch ON
- 4. Check PITOT HEAT caution light:

If the amber light stays ON, assume a failure in the pitot heating system. Avoid visible moisture and OATs below 10 deg C.

2.6 COOLANT LIQUID LOW LEVEL

Annunciation window	Alert window	
L COOLANT LOW	Lh Low Coolant	
OR		
R COOLANT LOW	Rh Low Coolant	

When the engine coolant liquid level goes under the lower limit, the related L or R COOLANT LOW warning alert is displayed. Low coolant level condition may lead to high CHT/CT. When the warning is displayed, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine Reduce power setting to reduce CHT/CT up to the minimum practical
- 3. Land as soon as practical

If CH/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 4)
- **5.** Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

2.7 GEAR PUMP FAILURE

Annunciation window	Alert window	
GEAR PUMP ON	Gear powered	

The GEAR PUMP ON caution light turns ON when the landing gear hydraulic pump is electrically supplied.

After the landing gear retraction, if the red TRANS light turns OFF and the GEAR PUMP ON caution stays turned ON, this could indicate a gear pump relay failure to ON.

If TRANS light is OFF

1. Continue the mission monitoring the caution light.

If TRANS light is ON

2. Landing gear is not locked in UP position

The electrical gear pump, continuously supplied, causes a current absorption which does not affect the mission unless this failure is coupled with the overall electrical failure. In this case, the residual battery endurance may be consistently lower than 30 minutes.

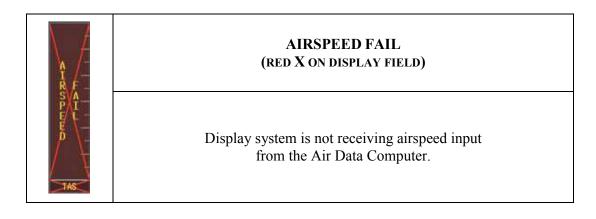
Page S3 - 14

2.8 ENGINE FIRE

Annunciation window	Alert window	
LH ENGINE FIRE	Left engine fire detected	
OR		
RH ENGINE FIRE	Right engine fire detected	

In event of engine fire, the LH or RH ENGINE FIRE warning alert is displayed. Refer to following procedures:

FIRE ON THE GROUND: see Para. 8.1 FIRE DURING TAKEOFF RUN: see Para. 8.2 FIRE IN FLIGHT: see Para. 8.3


2.9 Loss of information displayed

When a LRU or a LRU function fails, a large red 'X' is typically displayed on the display field associated with the failed data.

In most of cases, the red "X" annunciation is accompanied by a message advisory alert issuing a flashing ADVISORY Softkey annunciation which, once selected, acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window. Refer to G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00), last issue, Appendix A, Message Advisories list.

2.10 Loss of Airspeed Information

INSTRUCTION: revert to standby analogical airspeed indicator

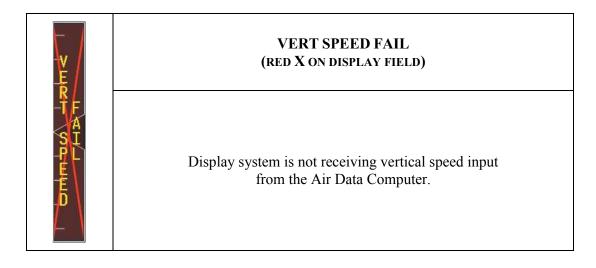
2.10 Loss of attitude information

ATTITUDE FAIL (RED X ON DISPLAY FIELD)

Display system is not receiving attitude information from the AHRS.

INSTRUCTION: revert to standby analogical attitude indicator

2.11 Loss of altitude information



ALTITUDE FAIL (RED X ON DISPLAY FIELD)

Display system is not receiving altitude input from the Air Data Computer.

INSTRUCTION: revert to standby analogical altitude indicator

2.12 Loss of vertical speed information

INSTRUCTION: determine vertical speed on the basis of altitude information

2.13 Loss of heading information

HDG	HDG (RED X ON DISPLAY FIELD)
	Display system is not receiving valid heading input from AHRS.

INSTRUCTION: revert to magnetic compass

Page S3 - 18

INTENTIONALLY LEFT BLANK

2.14 DISPLAY FAILURE

In the event of a display failure, the G950 System automatically switches to reversionary (backup) mode. In reversionary mode, all important flight information is presented on the remaining display in the same format as in normal operating mode. The change to backup paths is completely automated for all LRUs and no pilot action is required.

if the system fails to detect a display problem

1. DISPLAY BACKUP button

PUSH

If a display fails, the related Integrated Avionics Unit (IAU) is cut off and can no longer communicate with the remaining display: consequently the NAV and COM functions provided to the failed display by the Integrated Avionics Unit are flagged as invalid on the remaining display.

Page S3 - 20

INTENTIONALLY LEFT BLANK

Page S3 - 21

3. ENGINE SECURING

Following procedure is applicable to shut-down one engine in flight:

Throttle Lever
 Ignition
 Propeller Lever
 Fuel Selector
 Electrical fuel pump
 IDLE
 BOTH OFF
 FEATHER
 OFF

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT: see Para. 6.5

SINGLE GENERATOR FAILURE: see Para. 2.1 or BOTH GENERATOR FAILURE: see Para. 2.2

INFLIGHT ENGINE RESTART: see Para. 6.2

ONE ENGINE INOPERATIVE LANDING: see Para. 6.6 or LANDING WITHOUT ENGINE POWER: see Para. 10.1

INTENTIONALLY LEFT BLANK

4. POWERPLANT EMERGENCIES

4.1 Propeller overspeeding

The aircraft is fitted with propeller/governor set by MT-Propeller such a way that the maximum propeller rpm exceedance is prevented. In case of propeller overspeeding in flight, apply following procedure:

Throttle Lever REDUCE power to minimum practical
 Propeller Lever REDUCE as practical (not in feathering)
 RPM indicator CHECK

If it is not possible to decrease propeller rpm, apply *engine securing procedure* (see Para. 3) and **land as soon as possible applying** *one engine inoperative landing* procedure (See Para. 6.6).

Maximum propeller rpm exceedance may cause the engine components damage. Propeller and engine shall be inspected in accordance with related Operators Manuals.

4.2 CHT LIMIT EXCEEDANCE

If CHT/CT exceeds its limit, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

2. Affected engine Reduce power setting to reduce CHT/CT up to

the minimum practical

3. Land as soon as practical

If CHT/CT continues to rise and engine shows roughness or power loss

4. Affected engine SECURE (securing procedure on Para. 3)

5. Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

4.3 OIL TEMPERATURE LIMIT EXCEEDANCE

If oil temperature exceeds maximum limit (130°C):

1. OIL PRESS CHECK

If oil pressure is within limits

Affected engine
 Affected engine
 Reduce power setting to minimum applicable
 Keep propeller speed higher than 2000 RPM

If oil pressure does not decrease

4. Airspeed *INCREASE*

If oil temperature does not come back within limits, the thermostatic valve, regulating the oil flow to the heat exchangers, could be damaged or an oil leakage can be present in the oil supply line.

- 5. Land as soon as practical keeping the affected engine to the minimum necessary power
- 6. Monitor OIL PRESS and CHT/CT

if engine roughness / vibrations or erratic behaviour is detected:

- 7. Affected engine SECURE (engine securing procedure on Para. 3)
- 8. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

Page S3 - 26

4.4 OIL PRESSURE LIMITS EXCEEDANCE

If oil pressure exceeds its lower or upper limit (0.8 - 7 bar), apply following procedure:

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

An excessive oil pressure value can be counteracted by decreasing propeller rpm.

OIL PRESS

CHECK

If oil pressure exceeds upper limit (7 bar)

2. Throttle Lever first REDUCE affected engine power by 10%

3. Propeller Lever Keep low rpm

4. OIL PRESS *CHECK (verify if came back within the limits)*

5. Land as soon as practical

If oil pressure is under the lower limit (0.8 bar)

2. Land as soon as practical

If oil pressure is continuously decreasing

- 3. **Affected engine** SECURE (see engine securing procedure on Para. 3)
- 4. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

4.5 LOW FUEL PRESSURE

If fuel pressure decreases below the lower limit (2.2 psi), apply following procedure:

Fuel press CHECK
 Fuel quantity CHECK
 Fuel consumption MONITOR

If a fuel leakage is deemed likely

5. Land as soon as possible.

If a fuel leakage can be excluded:

4. Electrical fuel pump *ON*

5. Feed the affected engine by means of opposite side fuel tank

If pressure does not come back within the limits

6. Land as soon as practical

INTENTIONALLY LEFT BLANK

Page S3 - 28

Page S3 - 29

5. OTHER EMERGENCIES

5.1 EMERGENCY DESCENT

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15°.

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

1.	Power levers	IDLE
2.	Flaps	$U\!P$
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLE

5.2 TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON if necessary
2.	MASTER SWITCH	OFF
3.	FIELD LH and RH	BOTH OFF
4.	MASTER SWITCH	ON
5.	FIELD LH and RH	$BOTH\ ON$

If failure persists

9.	EMERG BATT switch	ON (if engine starting battery
		installed)

10. **Land as soon as possible** applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

5.3 STATIC PORTS FAILURE

In case of static ports failure, the alternate static port in the cabin (shown below) must be activated.

- 1. Cabin ventilation
- 2. ALTERNATE STATIC PORT VALVE
- 3. Continue the mission

OFF (hot and cold air)
OPEN

5.4 Unintentional Flight Into Icing Conditions

1. Carburettor heat *BOTH ON*

2. Pitot heat ON

3. Fly as soon as practical toward a zone clear of visible moisture, precipitation and with higher temperature, changing altitude and/or direction.

4. Control surfaces *Move continuously to avoid locking*

5. Propellers rpm *INCREASE to prevent ice build-up on the blades*

In event of ice build-up in correspondence of wing leading edges, stall speed increases.

Ice build-up on wing, tail fin or flight control surfaces unexpected sudden roll and/or pitch tendencies can be experienced and may lead to unusual attitude and loss of aircraft control.

Do not use Autopilot when icing formation is suspected or detected.

5.5 CARBURETTOR ICING

DURING TAKEOFF

The carburettor icing in "full throttle" mode is unlikely.

Take off in known or suspected icing formation is forbidden; in order to dispose of full engine take off power, take-off must be performed with carburettor heating OFF.

IN FLIGHT

Carburettor icing is considered probable when external air temperature is below 15° C and visible air moisture (clouds, mist, haze or fog) or atmospheric precipitation are present.

Generally, an OAT-to-dew point temperature spread lower than 10°C and OAT less than 15°C with visibility lower than 5 km is a positive indication of likely icing formation condition.

Should an inadvertent flight into known or forecast icing condition happen carburettor heating should be selected "ON" as soon as possible: the greater the advance carburettors are warmed the better the chances not to form ice and avoid engine power loss or reduction.

Keep Carb Heating "ON" until engine power is restored and area of possible icing condition is exited.

Carburettor Heating selected to "ON" will cause engine RPM reduction of about 100 RPM causing a sensible available engine power decrease.

5.6 FLAPS CONTROL FAILURE

DURING TAKEOFF

Flap UP take off, requires a T/O distance (50 ft height obstacle distance) increased by about 20%.

1. Airspeed Keep below 93 KIAS

2. Land as soon as practical

DURING APPROACH/LANDING

If the flaps control fails, consider the higher stall speed (see Section 5, Para. 6, "Stall Speed") and an increased landing distance of about 25%.

1. Airspeed *Keep over 75 KIAS*

2. Land as soon as practical on a runway of appropriate length

6 ONE ENGINE INOPERATIVE PROCEDURES

The ineffectiveness of one engine results in asymmetric traction which tends to yaw and bank the aircraft towards the inoperative engine. In this condition it is essential to maintain the direction of flight compensating the lower traction and counteracting the yawing effects by mean of rudder pedals. To improve directional control, it is advisable to bank the aircraft of about 5° to the side of the operating engine.

In addition, reduced available overall power and extended control surfaces will lead to a performances drop: a quick pitch attitude reduction will allow to keep a minimum safety airspeed.

The higher is the airspeed the better will be lateral and directional control efficiency: never allow airspeed to drop below V_{MCA} .

Best residual climb performances in OEI (One Engine Inoperative) condition have been recorded in Flap Up configuration and at V_{YSE} , which is marked as a Blue Line on the Airspeed indicator (calculated for maximum Take Off Weight and Sea, Level ISA condition) For actual condition V_{YSE} refer to Section 5 Para. 13, "One engine rate of climb".

 V_{XSE} is actually very close to V_{YSE} in any condition, thus best climb performance will also be associated with best climb angle (gradient) performance. Refer to Section 5 Para. 14, One-Engine Rate of Climb at V_{xSE} , for relevant data.

6.1 CHARACTERISTIC AIRSPEEDS WITH ONE ENGINE INOPERATIVE

In case of one engine inoperative condition (OEI), pilot shall take into account the airspeeds shown below:

Conditions	Spe (KIA	
Minimum aircraft control speed with one engine inoperative and flaps set to T.O. (V_{MC})	62	
Best rate-of-climb speed OEI (V_{YSE})	MTOW 1180 kg	MTOW 1230 kg
	80	84
Best gradient speed OEI (V _{XSE})	79	83

Reference is made to MTOW, 1180 kg and 1230 kg, at Sea Level and ISA condition (if Supplement G10- Increased MTOW @1230 KG - is applicable).

5.

6.

6.2 Inflight engine restart

After:

- mechanical engine seizure;
- fire;
- major propeller damage

engine restart is not recommended.

1. Carburettor heat ON if required

Electrical fuel pump
 Fuel quantity indicator
 CHECK

4. Fuel Selector *CHECK (Crossfeed if required)*

FIELD OFF
Ignition BOTH ON

7. Operating engine Throttle Lever SET as practical

8. Stopped engine Throttle Lever *IDLE*

9. Stopped engine Propeller Lever FULL FORWARD

Start push-button PUSH

11. Propeller Lever SET at desired rpm

12. FIELD ON (check for positive ammeter)

13. Engine throttle levers SET as required

If engine restart is unsuccessful

14. EMERG BATT switch

ON (if starting battery installed)

15. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

- 16. Affected engine SECURE (see engine securing procedure Para. 3)
- 17. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

6.3 Engine failure during takeoff run

BEFORE ROTATION: ABORT TAKE OFF

1. Throttle Lever **BOTH IDLE**

2. Rudder Keep heading control

3. Brakes As required

When safely stopped:

Failed Engine Ignition
 Failed Engine Field
 Failed Engine Electrical fuel pump

OFF
OFF

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

7. 8. Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

Operating engine Throttle Lever
 Operating engine Propeller Lever
 FULL POWER
 FULL FORWARD

3. Heading Keep control using rudder and

ailerons

4. Attitude Reduce as appropriate to keep

airspeed over 62 KIAS

5. <u>Inoperative engine Propeller Lever</u> *FEATHER*

6. Landing gear control lever *UP*

Airspeed V_{XSE}/V_{YSE} as required

Flaps

Page S3 - 38

At safe altitude

9. Inoperative engine *Confirm and SECURE*

10. Operative engine Electrical fuel pump *Check ON*

11. Operating engine Check engine instruments

12. Operating engine Fuel Selector Check correct feeding (crossfeed

if needed)

If engine restart is recommended:

13. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

13. Land as soon as possible

14. One engine inoperative landing procedure. see Para. 6.6

Following:

- mechanical engine seizure;
- *- fire*;
- major propeller damage

engine restart is not recommended.

Page S3 - 39

6.4 ENGINE FAILURE DURING CLIMB

. Autopilot OFF

Heading
 Attitude
 Keep control using rudder and ailerons
 Reduce as appropriate to keep airspeed over 62 KIAS

Operating engine Throttle Lever
 Operating engine Propeller Lever
 Operative engine Electrical fuel pump
 Inoperative engine Propeller Lever
 FULL THROTTLE
 FULL FORWARD
 Check ON
 FEATHER

8. <u>Inoperative engine</u> Confirm and *SECURE*

If engine restart is possible:

9. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

9. Land as soon as possible

10. One engine inoperative landing procedure. see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

Page S3 - 40

6.5 ENGINE FAILURE IN FLIGHT

1. **Autopilot OFF**

2. Heading Keep control using rudder and ailerons

3. Attitude Adjust as appropriate to keep airspeed over 62 KIAS

4. Operating engine *Monitor engine instruments*

5. Operative engine Electrical fuel pump Check ON

5. Operating engine Fuel Selector Check correct feeding (crossfeed if needed)

(crossfeed if needed)

If engine restart is possible:

7. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

8. Land as soon as possible

9. One engine inoperative landing procedure. see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12. Rate of climb with One Engine Inoperative.

Page S3 - 41

6.6 ONE ENGINE INOPERATIVE LANDING

Thoroughly evaluate residual Single Engine Go-Around capabilities and expected climb gradient should a Missed Approach / balked landing be executed.

Refer to Section 5, Para. Single engine go around/Balked landing/climb and Para. 13 and 14- One-engine Rate of Climb at $V_{\it YSE}$ and $V_{\it XSE}$

Autopilot must be kept OFF

1.	Seat belts	Tightly fastened
2.	Landing lights	As required
3.	Operating engine Fuel Selector	Check correct feeding/crossfeed if needed
4.	<u>Inoperative engine</u> Propeller Lever	CHECK FEATHER
5.	<u>Inoperative engine</u>	CHECK SECURED
6.	Operative engine Electrical fuel pump	ON

When on final leg:

7.	Flap	T/O
8.	Landing gear	Select DOWN and check three
		green lights on
9.	Approach Airspeed	$V_{Y\!S\!E}$
10.	Touchdown speed	70 KIAS

7 LANDING GEAR SYSTEM FAILURES

7.1 EMERGENCY LANDING GEAR EXTENSION

Landing gear extension failure is identified by means of the green lights not illuminated: relevant gear leg may not be fully extended and/or locked.

Light bulb operating status can be verified by pressing the LDG push-to-test button. Additionally, the red light TRANS indicates that one or more legs are moving and the PUMP ON amber light on the annunciator panel indicates the hydraulic gear pump is operating.

- 1. Airspeed
- 2. Landing gear control lever
- 3. Emergency gear extension access door
- 4. RH control lever
- 5. Wait at least 20 seconds

below applicable VLO/VLE

DOWN

REMOVE

ROTATE 90° counterclockwise

NOTE

Main Landing Gear legs green lights may be turned on, thus indicating effective main gear legs blocked in down position by mere effect of gravity force.

6. LH control lever

ROTATE 180° counterclockwise

7. Land as soon as practical

The emergency landing gear extension operation takes about 20- sec.

7.2 COMPLETE GEAR UP OR NOSE GEAR UP LANDING

The following procedure applies if Nose Landing Gear is not extended and locked even after emergency extension procedure.

A Nose Landing Gear up leg not down and locked might lead to a hazardous situation, especially on uneven runways.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If a complete Landing Gear up or a Nose Landing Gear up position is reported:

Preparation

1. Reduce fuel load if time and conditions permit

2. Crew and passengers safety belts Tightly fastened

3. Landing gear control lever *UP*

4. Green lights and TRANS light CHECK OFF

5. Flap setting plan approach with Flap Land

Before ground contact:

6. LH and RH Fuel Selector
 7. LH and RH Electrical fuel pump
 8. Ignitions

BOTH OFF
ALL OFF

On touch down:

9. Landing attitude slight nose-up and wings levelled,
 10. Touchdown speed as low as 50 KIAS with flap
 11. Aircraft nose gently lower as speed bleeds off

After aircraft stops:

12. FIELD LH and RH BOTH OFF

13. MASTER SWITCH OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

Garmin G950 IFDS -Supplement

P2006T - Aircraft Flight Manual

Page S3 - 44

14. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

Page S3 - 45

7.3 Partial Main LG extension

The following procedure applies if one or both Main Landing Gear legs are not completely extended and locked even after emergency extension procedure.

A partial gear landing (RH and/or LH leg not down and locked) might turn into a hazardous situation, especially on uneven runways.

If possible try to obtain a symmetric gear extension (e.g. by trying further landing gear retraction) in order to avoid swerving after touchdown. A gear up landing is generally considered safer.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

UP

Preparation

1. Reduce fuel load if time and conditions permit

2. Crew and passengers safety belts Tightly fastened

3. Landing gear control lever

4. Green lights and TRANS light CHECK OFF

5. Flap setting plan approach with Flap Land

If partially extended landing gear is confirmed:

Before ground contact:

6. LH and RH Fuel Selector
 7. LH and RH Electrical fuel pump
 8. Ignitions

BOTH OFF
ALL OFF

On touch down:

9. Align for approach
 10. Touchdown speed
 11. Touchdown
 12. Touchdown
 13. On the extended gear only
 14. On the extended gear only

12. Heading and direction maintain applying appropriate aileron and

rudder/steering control

13. Retracted leg keep off the ground as long as possible

Garmin G950 IFDS -Supplement

P2006T - Aircraft Flight Manual

Page S3 - 46

After aircraft stops:

14. FIELD LH and RH 15. MASTER SWITCH **BOTH OFF OFF**

Master switch to OFF impairs radio communication and outside aircraft lighting.

16. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

7.4 FAILED RETRACTION

1. Airspeed *Keep below applicable VLO/VLE*

2. Landing gear control lever *DOWN*

A Landing Gear lever recycle (further retraction attempt) may result in a final partial Landing Gear Extension, which may then compromise safe landing aircraft capability.

3. Landing Gear lights *Check*

If a safe landing configuration is obtained (3 greens)

4. Land normally

If a safe landing gear configuration is not obtained:

- 4. Emergency LG extension procedure Apply (See Para. 7.1)
- 5. Land as soon as practical

7.5 Unintentional landing gear extension

An unwanted landing gear extension, with at least one leg moving downward, may be caused by hydraulic fluid loss and it is signaled by

- significant aerodynamic noise increase;
- *light and counteractable nose down pitch moment;*
- red TRANS light turned on.

1. Airspeed Keep below applicable VLO/VLE

Landing gear control lever DOWN
 Landing Gear lights Check

If a safe landing configuration is obtained (3 greens)

4. Land normally

If a safe landing gear configuration is not obtained:

- 4. Emergency LG extension procedure *Apply (See Para. 7.1)*
- 5. Land as soon as practical

Page S3 - 48

INTENTIONALLY LEFT BLANK

8 SMOKE AND FIRE OCCURRENCE

8.1 ENGINE FIRE ON THE GROUND

Fuel Selectors
 Ignitions
 Electrical fuel pumps
 Cabin heat and defrost
 MASTER SWITCH
 BOTH OFF
 OFF

6. Parking Brake ENGAGED

7. Aircraft Evacuation carry out immediately

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

8.2 Engine fire during takeoff run

BEFORE ROTATION: ABORT TAKE OFF

1. Throttle Lever BOTH IDLE

2. Rudder Keep heading control

3. Brakes As required

With aircraft under control

Fuel Selector BOTH OFF
 Ignitions ALL OFF
 Electrical fuel pump BOTH OFF
 Cabin heat and defrost OFF

7. Cabin heat and defrost 8. MASTER SWITCH OFF

9. Parking Brake ENGAGED

10. Aircraft Evacuation carry out immediately

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

Operating engine Throttle Lever FULL POWER
 Operating engine Propeller Lever FULL FORWARD

3. Heading Keep control using rudder and

ailerons

4. Attitude Reduce as appropriate to keep

airspeed over 62 KIAS

5. <u>Fire affected engine Propeller Lever FEATHER</u>

5. Landing gear control lever *UP*

7. Airspeed V_{XSE}/V_{YSE} as required

8. Flaps *0*

P2006T - Aircraft Flight Manual

Page S3 - 51

At safe altitude

9.	Cabin heat and defrost	BOTH OFF
10.	Fire affected engine Fuel Selector	Confirm and OFF
11.	Fire affected engine Ignitions	Confirm and BOTH OFF
12.	Fire affected engine Electrical fuel pump	Confirm and OFF

13. Fire affected engine FIELD OFF

14. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

8.3 **ENGINE FIRE IN FLIGHT**

Cabin heat and defrost **BOTH OFF**

OFF 2. **Autopilot**

Fire affected engine Fuel Selector Confirm and OFF 3.

Fire affected engine Ignition Confirm and BOTH OFF 4.

5. Fire affected engine Throttle Lever Confirm and FULL FORWARD

Fire affected engine Propeller Lever Confirm and FEATHER 6.

Fire affected engine Electrical fuel pump **OFF** 7.

Heading Keep control using rudder and ailerons 8. Attitude 9.

Adjust as appropriate to keep airspeed

over 62 KIAS **OFF**

10. Fire affected engine Field 11. Cabin ventilation **OPEN**

12. Land as soon as possible applying one engine inoperative landing procedure.

See Para. 6.6

8.4 **ELECTRICAL SMOKE IN CABIN ON THE GROUND**

MASTER SWITCH OFF OFF Cabin heat and defrost

Throttle Lever BOTH IDLE 4. **Ignitions** ALL OFF **Fuel Selector BOTH OFF** 5. Parking Brake **ENGAGED**

Aircraft Evacuation carry out immediately

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

P2006T - Aircraft Flight Manual

Page S3 - 53

8.5 ELECTRICAL SMOKE IN CABIN DURING FLIGHT

Cabin ventilation OPEN
 Emergency light ON
 Standby attitude indicator switch ON

4. Gain VMC conditions as soon as possible

In case of cockpit fire:

5. Fire extinguisher use toward base of flames

A tripped circuit breaker should not be reset.

If smoke persists, shed electrical supply in order to isolate faulty source by:

6. FIELD LH and RH7. AVIONICS LH and RHOFF

8. CROSS BUS LH and RH BOTH OFF

A fully charged battery can supply electrical power for at least 30 minutes.

If faulty source is found:

9. It may be possible to restore non faulty power sources (one at a time)

If smoke persists:

Before total electrical system shutdown consider gaining VMC condition, at night set personal emergency light on.

Only emergency light and emergency ADI will be electrically powered

All radio COM and NAV, Landing Gear lever (normal mode) and indication lights, electrical trims and flaps will be unserviceable.

10. MASTER SWITCH

OFF

11. Land as soon as possible

Garmin G950 IFDS -Supplement

P2006T - Aircraft Flight Manual

Page S3 - 54

When on ground:

12. Aircraft Evacuation

carry out as necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

9 UNINTENTIONAL SPIN RECOVERY

Spin behaviour has not been demonstrated since certification process does not required it for this aircraft category.

Intentional spin is forbidden.

Stall with one engine inoperative is forbidden.

Should an unintentional spin occur, the classic recovery manoeuvre is deemed as being the best action to undertake:

1. Both engines throttles

2. Flight Controls

3. Rudder

idle centralize

fully against rotation until it stops

10 LANDING EMERGENCIES

10.1 LANDING WITHOUT ENGINE POWER

In case of double engine failure both propellers should be feathered to achieve maximum efficiency. Best glide speed is attained with flap UP and equals V_Y for current aircraft mass and air density altitude. Refer to Section 5, Para. "Enroute Rate of Climb".

Normal landing gear extension requires MASTER switch ON, an efficient battery and takes around 20 seconds.

LG selection should be appropriately anticipated when sure on final.

Flap can be set to T/O or LAND when sure on final to reduce landing ground roll on short field.

Touchdown speed can be as low as 50 kt with flap down.

Airspeed

MTOW 1180kg	MTOW 1230 kg
$V_Y = 83 \text{ KIAS}$	$V_Y = 84 \text{ KIAS}$

2. Flaps UP3. Emergency landing field Select

Emergency landing strip should be chosen considering surface condition, length and obstacles. Wind can be guessed by smoke plumes direction and tree tops or grass bending. Select touchdown direction according to the furrows of a plowed field, not across.

4. Safety belts5. Flaps

6. Landing gear control lever

FASTEN and tighten
Set when landing is assured
DOWN when landing is assured

To reduce landing gear extension time, evaluate use of emergency control system which requires about 12 sec.

P2006T - Aircraft Flight Manual

Page S3 - 57

Before touch down

7.	Fuel Selector	<i>BOTH OFF</i>
8.	Electrical fuel pump	BOTH OFF
9.	Ignitions	ALL OFF
10.	MASTER SWITCH	OFF

When stopped

11. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

10.2 LANDING WITH NOSE LANDING GEAR TIRE DEFLATED

If possible, as a nose landing gear flat tire condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If Nose Landing Gear flat tire is confirmed:

Preparation

Crew and passengers safety belts
 If time permits
 Flap setting
 Tightly fastened
 Burn fuel to lower landing weight plan approach with Flap Land

Before ground contact:

4. Fuel Selector
 5. Electrical fuel pump
 6. Ignitions
 BOTH OFF
 ALL OFF

On touch down:

Landing attitude slight nose-up and wings levelled,
 Touchdown speed as low as 50 KIAS with flap
 Aircraft nose gently lower as speed bleeds off

After aircraft stops:

10. FIELD LH and RH11. MASTER SWITCH12. BOTH OFF13. BOTH OFF14. BOTH OFF15. BOTH OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

12. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

Page S3 - 59

10.3 LANDING WITH A KNOWN MAIN LANDING GEAR TIRE DEFLATED

An asymmetrical landing gear tire condition (RH and/or LH tires deflated) might turn into a hazardous situation, especially on uneven runways.

If possible, as a landing gear tires condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If a main Landing Gear flat tire is confirmed:

Preparation

1. Crew and passengers safety belts Tightly fastened

2. Flap setting *plan approach with Flap Land*

Before ground contact:

Ignitions ALL OFF
 LH and RH Fuel Selector BOTH OFF
 LH and RH Electrical fuel pump BOTH OFF

On touch down:

Align for approach
 Touchdown speed
 Touchdown
 Touchdown
 Heading and direction
 Flattened tire
 Align for approach
 as low as 50 KIAS
 on the good tire gear only
 maintain applying appropriate
 aileron and rudder/steering control
 keep off the ground as long as possible

After aircraft stops (or if runway departure is imminent):

11. FIELD LH and RH12. MASTER SWITCH13. BOTH OFF14. BOTH OFF15. BOTH OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

13. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

P2006T - Aircraft Flight Manual

Page S3 - 60

10.4 LANDING WITHOUT BRAKES

If possible, select an airport with suitable runway length.

Otherwise, evaluate the possibility to perform a gear up landing (refer to procedure reported on Para. 7.2). In the latter case consider the increasing hazard of an uneven pavement.

1. Safety belts

FASTEN

After touch down if runway is deemed insufficient to decelerate:

2.	Fuel Selector	BOTH OFF
3.	Electrical fuel pumps	BOTH OFF
4.	Ignitions	ALL OFF
5.	FIELD LH and RH	BOTH OFF
6.	MASTER SWITCH	OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

Before end of runway or if runway departure is imminent:

7. Landing gear control lever

UP

After aircraft stops:

8. Aircraft Evacuation carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

Page S3 - 61

11 AIRCRAFT EVACUATION

Leave the aircraft when engines are fully stopped. Watch for engine hot parts and fuel, hydraulic fluid or oil spills when using fuselage doors. If fuselage doors are unserviceable escape through the ditching emergency exit

In case of engine fire escape from opposite or upwind aircraft side.

Verify (if not yet performed):

1.	Fuel Selectors	BOTH OFF
2.	Ignitions	ALL OFF
3.	Electrical fuel pumps	BOTH OFF
4.	MASTER SWITCH	OFF
5.	Parking Brake	ENGAGED

6. Leave the aircraft using emergency exits

12 DITCHING

3.

Contact with water shall happen with aircraft longitudinal axis and direction of motion parallel to the wave at the minimum possible speed. Keep the nose up as long as possible.

Once in the water, the aircraft shall be evacuated through the ditching emergency exit, if available put life vest on and set dinghy out first. Inflate them only outside the aircraft.

If available, try to approach any existing ship in the vicinity in order to be rapidly located and rescued right after ditching.

UP

1. Landing gear

2. Safety belts Tighten and fastened

Flaps FULL

Before water impact

Fuel Selector BOTH OFF 4. 5. Electrical fuel pump **BOTH OFF Ignitions** ALL OFF 6. 7. MASTER SWITCH **OFF** FIELD LH and RH **BOTH OFF** 8. Impact speed 50 KIAS

Aircraft evacuation

10. Emergency exit handle
 11. Latch door
 12. rotate clockwise
 13. push outward

11. Latch door *push outward*12. Life vests *don*

13. Evacuate the aircraft

Page S3 - 63

INTENTIONALLY LEFT BLANK

SECTION 4 - NORMAL PROCEDURES

INDEX

1.	INTRODUCTION 3
1.1.	Normal ops general recommendations 3
2.	AIRSPEEDS 7
1.2.	Normal operations 7
1.3.	Single engine training 8
3.	Normal procedures checklist 9
3.1	Recommendations for cold weather operations9
3.2	Pre-flight check – aircraft walk-around 11
3.3	Cockpit inspections 17
3.4	Engine starting 20
3.5	Before taxiing 22
3.6	Taxiing 22
3.7	Prior to takeoff23
3.8	Line-up
3.9	Takeoff and climb25
3.10	Cruise26
3.11	Turbulent air operation 26
3.12	Descent and approach27
3.13	Before landing 27
3.14	Balked landing/missed approach28
3.15	5After landing 28
3.16	Parking/shut down 29
3.17	Postflight checks 30
4.	Ground towing, parking and mooring 31
4.1.	Towing 31
4.2.	Parking 31
4.3.	Mooring 32

INTENTIONALLY LEFT BLANK

P2006T - Aircraft Flight Manual

Page S4 - 3

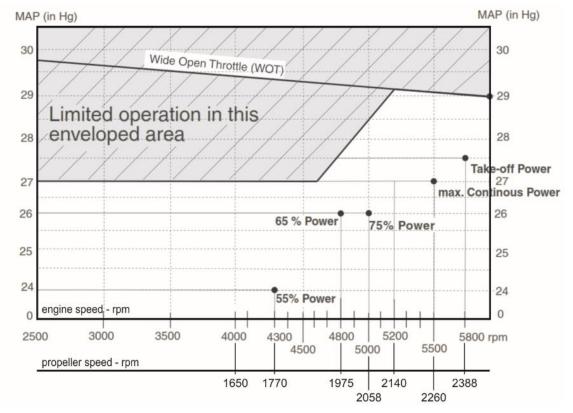
1. INTRODUCTION

Section 4 describes checklists and recommended procedures for the conduct of normal operations for *P2006T* aircraft.

1.1. NORMAL OPS GENERAL RECOMMENDATIONS

The following points should be always brought to attention to pilot/instructor/operator when operating a Tecnam aircraft equipped with variable pitch propeller:

1. **Propeller governor ground check**: during the ground check of governor, as prescribed by the propeller/governor manufacturer, the drop should not be above 600/650 prop RPM. The aim of this ground check is to confirm governor efficiency, not the complete feathering function.


Especially during the first cycle of prop lever pulling, the governor tendency is to respond to the input with consistent delay (causing the pilot to continue retarding the prop lever until a sudden and abrupt RPM change is observed).

This causes an excessive drop in propeller speed which, in some cases, may reach up to 800 RPM and, consequently, a drop of up to 2000 engine shaft rpm. The long term result is a major wear of engine gearbox, bushings and pistons and, in some cases, may result in detonation. In order to avoid these long term adverse effects, ground check of governor should be performed by slowly and gently retarding the prop lever until a drop a drop from 1650 to 1100 rpm is displayed on prop rpm indicator. The purging cycle should be repeated up to 4 times, with the governor closely (firmly and positively) control the rpm.

during governor ground check, drop shall not exceed 600 propeller rpm
 pilot shall be ready to push the prop lever if drop of >550rpm is recorded during check

- **2.** *Power changes:* When power setting changes are required in any flight condition, remember the following correct procedure:
 - Power increase = FIRST Prop THEN Map
 - Power reduction = FIRST Map THEN Prop

Useful guideline chart that could be used for best propeller/manifold combination is following reported:

3. Suitable Fuels: Tecnam remember operators to fill the aircraft with approved and suitable fuels. Use of not approved/unknown fuels may cause damages to the engine.

ONLY USE APPROVED FUELS

For details refer to Section 2 of this manual (or applicable Supplement) and latest issue of Rotax SI-912-016

P2006T - Aircraft Flight Manual

Page S4 - 5

G950 system use

For safety reasons, G950 operational procedures must be learned on the ground.

Document Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue, reports detailed instructions to operate the system in subject. Make always reference to the above mentioned document.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

To reduce the risk of unsafe operation, carefully review and understand all aspects of the G950 Pilot's Guide documentation at the last issue and the AFM for the aircraft. Thoroughly practice basic operation prior to actual use. During flight operations, carefully compare indications from the G950 to all available navigation sources, including the information from other NAVAIDs, visual sightings, charts, etc. For safety purposes, always resolve any discrepancies before continuing navigation.

Do not use basemap (land and water data) information for primary navigation. Basemap data is intended only to supplement other approved navigation data sources and should be considered as an aid to enhance situational awareness. Do not use outdated database information. Databases used in the G950 system must be updated regularly in order to ensure that the information remains current. Pilots using any outdated database do so entirely at their own risk. Reference "Garmin G950 Pilot's Guide for the Tecnam P2006T" (P/N 190-01146-XX), last issue, Appendix B concerning SD card use and databases.

For safety reasons, G950 operational procedures must be learned on the ground.

Because of variation in the earth's magnetic field, operating the G950 within the following areas could result in loss of reliable attitude and heading indications.

North of 72° North latitude at all longitudes; South of 70° South latitude at all longitudes; North of 65° North latitude between longitude 75° W and 120° W. (Northern Canada); North of 70° North latitude between longitude 70° W and 128° W. (Northern Canada); North of 70° North latitude between longitude 85° E and 114° E. (Northern Russia); South of 55° South latitude between longitude 120° E and 165° E. (Region south of Australia and New Zealand).

P2006T - Aircraft Flight Manual

Page S4 - 6

The altitude calculated by G950 GPS receivers is geometric height above Mean Sea Level and could vary significantly from the altitude displayed by pressure altimeters, such as the GDC 74A Air Data Computer, or other altimeters in aircraft. GPS altitude should never be used for vertical navigation. Always use pressure altitude displayed by the G950 PFD or other pressure altimeters in aircraft.

NOTE

If the pilot profile is changed during the flight, the HSI could not indicate the correct LOC or VOR indication until the pilot manually tunes the active frequency. Make sure that the displayed indication on the HSI indicator is consistent with the selected frequency.

NOTE

The data contained in the terrain and obstacle databases comes from government agencies. Garmin accurately processes and cross-validates the data, but cannot guarantee the accuracy and completeness of the data. Reference "Garmin G950 Pilot's Guide for the Tecnam P2006T" (P/N 190-01146-XX), last issue, Appendix B concerning SD card use and databases.

NOTE

Use of polarized eyewear may cause the flight displays to appear dim or blank.

2. AIRSPEEDS

2.1. NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations, with reference to both MTOW: 1180 kg and 1230 kg (if Supplement G10 - Increased MTOW @1230 KG - is applicable).

		MT	OW
	FLAPS	1180kg	1230 kg
Rotation Speed (in takeoff, V_R)	T/O	64 KIAS	65 KIAS
Best Angle-of-Climb Speed (V_X)	0°	73 KIAS	72 KIAS
Best Rate-of-Climb speed (V_Y)	0°	80 KIAS	84 KIAS
Approach speed	T/O	90 KIAS	90 KIAS
Final Approach Speed	FULL	70 KIAS	71 KIAS
Manoeuvring speed (V_A)	0°	118 KIAS	122 KIAS
Never Exceed Speed (V_{NE})	0°	167 KIAS	171 KIAS

2.2. SINGLE ENGINE TRAINING

 V_{SSE} is a speed selected as training aid for pilots in the handling of multi-engine aircraft. It is the minimum speed for intentionally rendering on engine inoperative in flight. This minimum speed provides the margin the manufacturer recommends for us when intentionally performing engine inoperative maneuvers during training. Shutting down an engine for training shall not become a habit; for safety purpose, and in order to optimise training, engine shutdown to perform OEI shall be executed only when necessary and required by regulations (e.g. during flight check, skill tests or demonstration as per 14CFR Part61 or similar).

A simulated feather condition is obtained with propeller lever full forward and throttle lever set at 13.5 in Hg MAP at 70-90 KIAS and 2000-4000 ft (density altitude).

Recommended safe simulated OEI speed (V_{SSE}) 70 KIAS

Keep speed above V_{SSE} for simulated OEI training operations.

In normal operations, shutting down an engine for training shall not become a habit, in particular for safety reasons and in order to optimise training; engine shutdown to perform OEI shall be executed only when required by regulations (e.g. during flight check, skill tests or demonstration as per 14CFR Part61 or equivalent rule).

The continuous operation of engine securing for training may indeed cause long term damages to the engine itself due to the high load coming from propeller (which is in feathering angle during the engine re-starting).

3. Normal procedures checklist

3.1 RECOMMENDATIONS FOR COLD WEATHER OPERATIONS

Engine cold weather operation

Refer to Rotax 912 Series Operators Manual, last issue, providing instructions for operating media (lubricant and coolant specifications) to be used in cold weather operation.

Parking

When the airplane is parked in cold weather conditions and it is expected to be soaked at temperatures below freezing, some precautions need to be taken.

Clear snow, slush, and ice in the parking area, or at least clear the area around the tires to prevent them from freezing to the ground. Apply plugs on Pitot and static ports.

The exposed airframe parts should be protected, especially the engines, the wheels, the blades and the gears against the snow or ice accumulation. Water and other freezable liquids should be removed from the airplane.

Standing water that could freeze should be removed from critical parts, as flaps and ailerons hinges, trim tabs hinges, drain points, LG doors, cabin doors etc.

With an ambient temperature of below -20°C, remove battery and store in a warm dry place; additionally in order to prevent a heavy discharge and to increase the battery life time, it is recommended to use an external power source for engine starting at temperatures lower than -15°C.

When wheel brakes come in contact with ice, slush, or snow with freezing conditions, the brake disk may freeze: park the aircraft with parking brake control knob in OFF position and ensure the aircraft is properly chocked and moored.

In any case, when the probability of ice, snow, or heavy frost is forecast, the use of a hangar is strongly recommended.

An external inspection of the aircraft is performed before each flight, as prescribed on Section 3.1.

For cold weather operations, the crew must focus on the check of following parts of airplane (free of snow/ice/standing water).

- control surfaces
- fuselage
- wings
- vertical and horizontal stabilator
- stall warning switch
- engine inlets
- engines draining points
- propeller blades
- LG doors
- Pitot, and static ports
- fuel tank vents

Tires show low pressure in cold weather: the required adjustments to inflation pressure should be performed on tires cooled to ambient temperature.

If the crew detects ice, anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

Removal of snow/ice accumulations is necessary prior to take-off because they will seriously affect airplane performance. Aircraft with ice/snow accumulation is not cleared for flight.

If the aircraft must be operated in cold weather conditions within the range -25°C to -5°C, it is suggested to perform following procedure in order to speed up the engine warm-up:

- Tow the airplane in a warm hangar (warmer than -5°C);
- Let airplane temperature stabilize;
- Check pressure in hydraulic system, recharge if necessary;
- Heat the cabin to a suitable value to avoid windshield frost in flight; an electrical fan heater may be used inside the cabin;
- Tow airplane outside and perform engine starting as soon as possible.

3.2 Pre-flight check – Aircraft Walk-Around

To perform the aircraft walk-around, carry out the checklists according to the pattern shown in Figure 4-1.

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

Visual inspection is defined as follows: check for defects, cracks, delamination, excessive play, unsafe or improper installation as well as for general condition, presence of foreign objects, slippage markers etc. For control surfaces, visual inspection also involves additional check for freedom of movement. Always check the ground in the area of the aircraft for evidence of fuel, oil or operating fluids leakages.

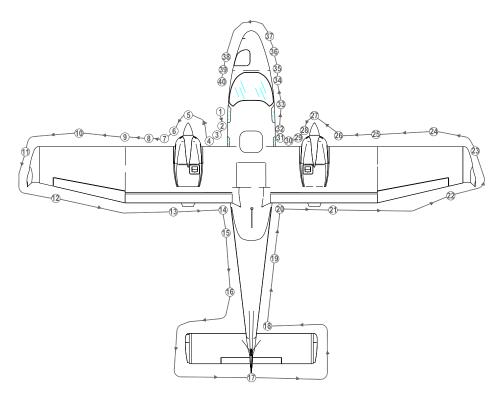


Figure 4.1

1	Pilot door and cabin	Check door for integrity. Turn ON the Master Switch and check Stall Warning switch for operation and condition; check lighting of Landing/Taxi/Nav/Strobe lights, then turn OFF the Master Switch.
2	Left main landing gear	Check fuselage skin status, tire status (cuts, bruises, cracks and excessive wear), slippage markers integrity, gear structure and

age.

- 3 Wheel chock
- 4 Propeller and spinner
- 5 Left engine nacelle

Remove if employed

The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fixing and lack of play between blades and hub.

shock absorber, hoses, gear door attachments and gear micro-switches. There should be no sign of hydraulic fluid leak-

Perform following inspections:

- a) Check the surface conditions.
- b) Nacelle inlets and exhausts openings must be free of obstructions. If inlet and outlet plugs are installed, they should be removed.
- c) Check radiators. There should be no indication of leakage of fluid and they have to be free of obstructions.
- d) Only before the first flight of a day:
 - (1) Verify coolant level in the expansion tank, replenish as required up to top (level must be at least 2/3 of the expansion tank).
 - (2) Verify coolant level in the overflow bottle through the slot under the nacelle: level must be between min. and max. mark. Replenish if required removing the upper cowling; after that, install upper cowling checking for interferences with radiators
 - (3) Turn the propeller by hand to and fro, feeling the free rotation of 15° or 30° before the crankshaft starts to rotate. If the propeller can be turned between the

- dogs with practically no friction at all further investigation is necessary. Turn propeller by hand in direction of engine rotation several times and observe engine for odd noises or excessive resistance and normal compression.
- e) Check oil level and replenish as required. Prior to oil check, switch off both ignitions circuits and turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank, or let the engine idle for 1 minute. This process is finished when air is returning back to the oil tank and can be noticed by a murmur from the open oil tank. Prior to long flights oil should be added so that the oil level reaches the "max" mark.
- f) Drain off Gascolator for water and sediment (drain until no water comes off). Then make sure drain valve is closed.
- g) Check drainage hoses clamps
- *h)* Verify all parts are fixed or locked.
- i) Verify all inspection doors are closed.

Check engine air inlet for integrity and correct fixing. The air intake filter must be

- free of obstructions.
- Check that the refuelling port cap is properly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Verify the tank vent outlet is clear.
- Visual inspection
- Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for condition and free of obstruction. Check stall strip.

- 6 Air induction system
- 7 Left fuel tank

- 8 Landing and taxi lights
- 9 Left wing leading edge

Garmin G950 IFDS - Supplement

P2006T - Aircraft Flight Manual Page S4 - 14

10	Left wing top and bottom panels	Visual inspection
11	Left winglet, nav and strobe	Check for integrity and fixing
12	lights, static discharge wick Left aileron and balance mass	Visual inspection, remove tie-down devices and control locks if employed.
13	Left Flap and hinges	Visual inspection
14	Left static port	Remove protective cap – Visual inspection
15	Antennas	Check for integrity
16	Gear pump, external power and battery compartment	Check emergency landing gear extension system pressure (low pressure limit: 20 bar), external power and battery compartments closure.
17	Horizontal and vertical empennage and tabs. Static discharge wicks.	Check the actuating mechanism of control surfaces and the connection with related tabs. Check wicks for integrity. Remove tiedown device if employed.
18	Stabilator leading edge	Check for integrity
19	Fuselage top and bottom skin	Visual inspection
20	Right static port	Remove protective cap – Visual inspection
21	Right Flap and hinges	Visual inspection
22	Right aileron and balance weight	Visual inspection, remove tie-down devices and control locks if employed.
23	Right winglet, nav and strobe lights, static discharge wick	Check for integrity and fixing and lighting
24	Right wing top and bottom panels	Visual inspection
25	Right wing leading edge	Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for condition and free of obstruction. Check stall strip.
26	Right fuel tank	Check that the refuelling port cap is properly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Verify the tank vent outlet is clear.
27	Propeller and spinner:	The propeller blades and spinner should be free of cracks, nicks, dents and other

Garmin G950 IFDS - Supplement

P2006T - Aircraft Flight Manual Page S4 - 15

		defects and should rotate freely. Check fixing and lack of play between blades and hub.
28	Right engine nacelle	Apply check procedure reported in the walk-around station 5 and 6
29	Passenger door and cabin	Check door for integrity. Check safety belts for integrity and baggage for correct positioning and fastening. Check ditching emergency exit safety lock. Check passengers ventilation ports for proper setting.
30	Right main landing gear	Apply check procedure reported in the walk-around Station 2
31	Wheel chock	Remove if employed
32	Bottom fuselage antennas	Check for integrity
33	Right cabin ram-air inlet	Visual inspection
34	Right Pitot tube	Remove protective cap and check for any obstruction
35	Nose landing gear	Check tire status (cuts, bruises, cracks and excessive wear),slippage markers integrity, gear structure and retraction mechanism, shock absorber and gear doors attachments. There should be no sign of hydraulic fluid leakage.
36	Radome	Check for integrity
37	Radome access door	Visual inspection
38	Left Pitot tube	Remove protective cap and check for any obstruction
39	Left cabin ram-air inlet	Visual inspection

NOTE

Avoid blowing inside Pitot-tube and inside airspeed indicator system's static ports as this may damage instruments.

INTENTIONALLY LEFT BLANK

3.3 COCKPIT INSPECTIONS

Instruct passengers on how to use safety belts and normal / emergency exits. Passenger embarkation should be done, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges. Do not smoke on board.

Clean the displays using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings. Cleaners containing ammonia will harm the anti-reflective coating.

1.	Parking brake	CHECK ENGAGED
2.	AFM and Garmin Pilot's Guide	CHECK on board
3.	Weight and balance	CHECK if within the limits
4.	Flight controls	Remove seat belt used as lock
5.	PFD and MFD	CHECK clean
6.	Seat	Adjust as required
7.	Seat belt	Fastened
8.	Passenger briefing	Completed
9.	Doors	CLOSED AND LOCKED
10.	Landing gear control lever	CHECK DOWN
11.	Breakers	All IN
12.	MASTER SWITCH	ON
13.	Fuel quantity	CHECK
14.	RH fuel selector	RIGHT
15.	LH fuel selector	LEFT
16.	RH Electrical Fuel Pump	ON, check fuel pressure gauge correct operation.
17.	RH Electrical Fuel pump	OFF, check pressure decreased at zero
18.	LH Electrical Fuel Pump	ON, check fuel pressure gauge correct operation.
19.	LH Electrical Fuel pump	OFF, check pressure decreased at zero
20.	Strobe light	ON
21.	Landing gear lights	TEST
22.	ELT	CHECK set to ARM
23.	Fire detector	TEST
24.	Engine levers friction	Adjust if required
25.	Flight controls	CHECK free
26.	Alternate static port	CHECK closed

Garmin G950 IFDS - Supplement

P2006T - Aircraft Flight Manual Page S4 - 18

27.	Cabin heat	CLOSED
-----	------------	--------

Plaps

Operate control to FULL position.

Verify extension. Retract flaps.

29. Pitch trim control Set to neutral position.

30. Rudder trim control Set to neutral position.

Eng. Starting Battery Voltmeter Check 12 to 14 Volt

31. Eng. Starting Battery Voltmeter Check 12 to 14 Voltmeter (if installed)

4th Edition, Rev. 0

INTENTIONALLY LEFT BLANK

3.4 ENGINE STARTING

Avionics switches must be set OFF during engine starting to prevent avionic equipment damage.

1 Start clearance Obtain if needed

Right engine starting

2	RH Throttle lever	IDLE
3	RH Carburetor heat	OFF

4 RH Propeller Lever FULL FORWARD
 5 RH Choke ON if required

NOTE

Cold engine.

Throttles idle (fully closed), chokes fully opened.

Soon after starting advance the throttle to ~800 RPM and slowly close the choke. Keep engine at ~900 RPM for warm up period.

Hot engine.

Park the aircraft with the nose pointing into wind in order to aid cooling. Keep chokes closed and slowly open the throttles one inch while cranking.

"Flooded Engine" (after engine start failure).

Keep chokes closed, open throttle fully and start the engine, then quickly reduce throttles to idle

6	RH Electrical Fuel	pump	ON,	check	advisory	light	ON	and	posi-
---	--------------------	------	-----	-------	----------	-------	----	-----	-------

tive fuel press build up

7 RH engine propeller zone *CHECK free*8 RH ignitions switches *BOTH ON*

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

9	RH start pushbutton	PUSH
10	RH Field	ON

11	RH engine oil gauge	CHECK if increasing within 10 sec.

(max 7 bar in cold operation)

12 RH propeller RPM 1200 RPM

Garmin G950 IFDS - Supplement

P2006T - Aircraft Flight Manual Page S4 - 21

13	RH Choke	OFF
14	RH Avionics	ON
15	RH Cross bus	ON
16	RH Ammeter	CHECK Amps positive
17	Voltmeter	CHECK 12 to 14 Volt
18	Chronometer	Start

Left engine starting

Strobe light

19

1	LH Throttle lever	IDLE
2	LH Carburetor heat	OFF
3	LH Propeller Lever	FULL FORWARD
4	LH Choke	ON if required
5	LH Electrical Fuel pump	ON, check advisory light ON and positive fuel press build up
6	LH engine propeller zone	CHECK free
7	LH ignitions switches	BOTH ON

ON

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

8	LH start pushbutton	PUSH
9	LH Field	ON
10	LH engine oil gauge	CHECK if increasing within 10 sec. (max 7 bar in cold operation)
11	LH propeller RPM	1200 RPM
12	LH Choke	OFF
13	LH Avionics	ON
14	LH Cross bus	ON
15	LH Ammeter	CHECK Amps positive

3.5 BEFORE TAXIING

1 Let the engines warm up to a minimum oil temperature of 50°C at 1200 RPM

Nav , Taxi and Landing lights ON
 Transponder Stand

3 Transponder Stand-by
 4 Passengers and crews seat belts Fastened

5 Passengers and crews headphones Set as required

3.6 TAXIING

NOTE

Ensure that the main and passengers' doors warning lights are turned off.

1	LH/RH Fuel Selector	As required
2	LH and RH fuel pressure	Monitor
3	Parking Brake	RELEASE
4	Flight instruments	CHECK
5	Engine instruments	CHECK

6 Altimeter SET both and crosscheck

max difference 150 ft

7 Brakes TEST

3.7 PRIOR TO TAKEOFF

1Parking BrakeENGAGED2RH Fuel SelectorRIGHT3LH Fuel SelectorLEFT4LH and RH fuel pressureCHECK

5 LH and RH Engine parameters checks:

Oil temperature: 50-110°
 CHT: Max 135°

• Oil pressure: 2-5 bar (above 1400 RPM): 0.8 bar (below 1400 RPM)

• Fuel pressure: 2.2 – 5.8 psi (0.15 - 0.40 bar)

*2.2 - 7.26 psi (0.15 - 0.50 bar)

*applicable for fuel pump part no.893110 and no.893114

6 LH and RH Generator lights
 7 LH and RH Propeller Lever
 CHECK BOTH OFF
 FULL FORWARD

8 LH and RH Throttle Lever 1650 RPM

RH Ignitions switches Set L / R / BOTH (RPM drop with

single ignition circuit selected must not exceed 130 prop's RPM; maximum RPM difference by use of either circuits LEFT or RIGHT cannot over-

come 50 RPM)

9 RH Propeller Lever Governor check. Retard the prop lever

until 1100 RPM. The purging cycle should be repeated up to 4 times, with the governor closely (firmly and posi-

tively) control the rpm.

Verify 1650 prop RPM are restored with prop lever at full forward posi-

tion.

10 RH Carburettor heat ON, verify propeller RPM decreasing

about 100 RPM

11 RH Carburettor heat *OFF*

12 RH engine instruments CHECK parameters if within green

arcs

13 LH Ignitions switches Set L / R / BOTH (RPM drop with

single ignition circuit selected must not exceed 130 prop's RPM; maximum RPM difference by use of either circuits LEFT or RIGHT cannot over-

come 50 RPM)

Garmin G950 IFDS - Supplement

P2006T - Aircraft Flight Manual Page S4 - 24

LH Propeller Lever	Governor check. Retard the prop lever until 1100 RPM. The purging cycle should be repeated up to 4 times, with the governor closely (firmly and positively) control the rpm. Verify 1650 prop RPM are restored with prop lever at full forward position.
LH Carburettor heat	ON, verify propeller RPM decreasing about 100 RPM
LH Carburettor heat	OFF
LH engine instruments	CHECK parameters if within green arcs
LH and RH Fuel quantity indicator	CHECK consistent with fuel plan
Flaps	T/O or as required (see Section 5, Take OFF performances)
Pitch trim and rudder trim	SET neutral position
Flight controls	Check free
Seat belts fastened and doors closed and locked	CHECK
	LH Carburettor heat LH Carburettor heat LH engine instruments LH and RH Fuel quantity indicator Flaps Pitch trim and rudder trim Flight controls Seat belts fastened and doors closed and

3.8 LINE-UP

1	Parking Brake	RELEASE, check full in
2	Annunciator window	CHECK cautions and warnings OFF
3	RH Fuel Selector	RIGHT
4	LH Fuel Selector	LEFT
5	Pitot heat	as required
6	XPDR	\overline{SETALT}
7	Magnetic compass	CHECK
8	AHRS	CROSS CHECK

3.9 TAKEOFF AND CLIMB

1	Landing light	ON	
2	LH and RH Electrical Fuel pump	BOTH ON	
3	Carburettors heat	CHECK OFF	
4	LH and RH Propeller Lever	FULL FORWARD	
5	LH and RH Throttle Lever	FULL POWER	
6	Engines instruments	Parameters within	green arcs
7	Rotation speed	MTOW 1180kg	MTOW 1230 kg
		Vr = 64 KIAS	Vr = 65 KIAS
8	Apply brakes to stop wheel spinning		
9	Landing gear control knob	UP: check green light turned OFF w	lights and TRANS vithin about 20"
10	Landing and taxi lights	OFF above 10000	

11

Max take off power must be limited to 5 minutes. Reduce Throttles MAP power before retracting Propeller to 2200 RPM or below.

12 LH and RH Electrical Fuel pump BOTH OFF

LH and RH Propeller Lever

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary).

Set max cont power at safe altitude

It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

Noteworthily best climb gradient speed (V_X) flaps UP is lower than best climb speed (V_X) flaps T/O up to 6000 ft (density altitude). Refer to Section 5, "Best climb gradient speed" table.

3.10 CRUISE

1 LH and RH Propeller Lever SET to 1900-2250 RPM

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set before engine Throttle Levers are advanced.

2 Engine parameters check (LH and RH)

Oil temperature: 90°÷110° C.
 CHT: 90°÷110° C
 Oil pressure: 2 - 5 bar.

• Fuel pressure: 2.2 – 5.8 *psi*

*2.2 - 7.26 psi (0.15 - 0.50 bar)

Carburettor heat as needed (see also instructions addressed on Section 3, Para. 7.4)

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

4 Fuel balance and crossfeed *check as necessary*

3.11 TURBULENT AIR OPERATION

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed buildups, which may occur as a result of the turbulence or of distractions caused by the conditions.

^{*}applicable for fuel pump part no.893110 and no.893114

3.12 DESCENT AND APPROACH

1 Propellers Set to Max Continuous 2250 RPM

2 Carburettors heat As required

Altimeter setting *QNH set and crosscheck*

3.13 BEFORE LANDING

1	Rear passengers seats	Seats set at full aft and lower position
2	LH and RH Electrical Fuel pump	BOTH ON

3 On downwind leg:

MTOW 1180kg	MTOW 1230 kg	
V_{FE} = 119KIAS	V_{FE} =122KIAS	

Flaps T/O

4 Speed below applicable VLO/VLE Landing gear control knob - DOWN -

Check green lights ON

Carburettors heat CHECK OFF
 LH and RH Propeller Lever FULL FORWARD

7 On final leg: speed below 93 KIAS Flaps FULL

8 Final Approach Speed MTOW 1180kg MTOW 1230 kg $V_{APP} = 70KIAS \qquad V_{APP} = 71KIAS$

9 Landing and taxi light ON 10 Touchdown speed 65 KIAS

3.14 BALKED LANDING/MISSED APPROACH

LH and RH Propeller Lever
 LH and RH Throttle Lever
 FULL FORWARD
 FULL POWER

Propeller Lever increase to max RPM should be attained before engine Throttle Levers are advanced to max take off power. Max take off power must be limited to 5 minutes.

3 Flaps T/O

4 Speed Keep over 62 KIAS, climb to V_Y or V_X

as applicable

5 Landing gear *UP as positive climb is achieved*

6 Flaps *UP*

NOTE

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary).

It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

Noteworthily best climb gradient speed (V_X) flaps UP is lower than best climb speed (V_X) flaps T/O up to 6000 ft (density altitude). Refer to Section 5, "Best climb gradient speed" table.

3.15 AFTER LANDING

1 LH and RH Electrical Fuel pump BOTH OFF

2 Flaps θ°

3 Landing light OFF

3.16 PARKING/SHUT DOWN

NOTE

It is always suggested to park the aircraft with the nose pointing into wind to improve cooling after shut down.

1	Parking brake	Engage
2	Taxi light	OFF
3	Engines	Allow for cooling down 1 minute at
		idle power
4	LH and RH AVIONIC BUS	OFF
5	LH and RH CROSS BUS	OFF
6	Flaps	Check in UP
7	Trims	Check neutrals
8	Navigation lights	OFF

NOTE

Ensure the engine is at its lowest possible idle speed before selecting ignitions off.

9	Ignitions	Turn OFF one at time
10	Doors safety locks	Check OFF
11	LH/RH Field	OFF
12	All external lights	OFF
13	Master Switch	OFF
14	LH and RH Fuel Selector	BOTH OFF
15	Emg Batt / Emg cockpit light	Check OFF

Before disembarkation verify propellers are fully stopped.

Instruct passengers to fully open pax door (against nacelle stop) and depart alongside aircraft fuselage, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges.

Crew should avoid propeller disc area crossing while proceeding alongside a fully opened pilot's door (up to 110°).

3.17 POSTFLIGHT CHECKS

- 1 Protective cover for Pitot tubes, stall warning and static port plugs.
- 2 Lock one control wheel with safety belt.
- Wheel chocks
 Aileron lock
 Place and tighten
 Pilot and passengers doors.
 Place and tighten
 Close and latch

4. GROUND TOWING, PARKING AND MOORING

4.1. Towing

When the a/c is moved on the ground, the Master Switch must be turned ON until the a/c is parked.

To tow the aircraft it is necessary to use a metal stiff bar connected to the nose gear.

Do not turn nose wheel above 20° either side of center: greater steering angles can damage the wheel stop. The tow bar must be removed before engines starting.

4.2. PARKING

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake and install control locks
- 3. Secure pilot control wheel by wrapping the seat belt around it.

Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para. 4.3.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

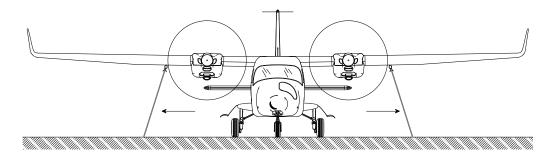
4.3. Mooring

The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

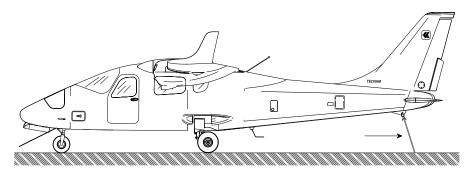
Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind.
- 2. Center nose wheel, engage parking brake and/or use the wheel chocks.



Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.

- 3. Secure pilot control wheel by wrapping the seat belt around it
- 4. Assure flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks and protective plugs.
- 7. Close and lock cabin doors.
- 8. Secure tie-down cables to the nose gear leg (in correspondence of the wheel fork) and to the wings and tail cone tie-down rings at approximately 45 degree with respect to the ground. (Refer to following figures)



Additional preparation for high winds includes tie-down ropes from the main landing gear forks employment.

Mooring - front view

Mooring - side view

INTENTIONALLY LEFT BLANK

SECTION 5 - PERFORMANCES

INDEX

1.	Introduction	
	Use of performances charts	
3.	Airspeed indicator system calibration	
4.	ICAO Standard Atmosphere	4
5.	Stall speed	5
6.	Crosswind	6
7.	Takeoff performances	7
8.	Take-off Rate of Climb at V _v	10
9.	Take-off Rate of Climb at V _x	11
	Enroute Rate of Climb at V _v	
11.	Enroute Rate of Climb at V _x	13
12.	One-Engine Rate of Climb at V _{vse}	14
	One-Engine Rate of Climb at V _{xsE}	
	Cruise performances	
	Landing performances	
	Balked landing climb gradient	
_	Noise data	

P2006T - Aircraft Flight Manual Page SW5 - 2

1. Introduction

This section provides all necessary data for an accurate and comprehensive planning of flight activity from takeoff to landing.

Data reported in graphs and/or in tables were determined using:

- "Flight Test Data" under conditions prescribed by EASA CS-23 regulation
- aircraft and engine in good condition
- average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - s.l.); evaluations of the impact on performances were carried out by theoretical means for:

- *airspeed
- *external temperature
- *altitude
- *weight
- *runway type and condition

2. USE OF PERFORMANCES CHARTS

Performances data are presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan the mission with required precision and safety.

Additional information is provided for each table or graph.

3. AIRSPEED INDICATOR SYSTEM CALIBRATION

Graph shows calibrated airspeed V_{CAS} as a function of indicated airspeed V_{IAS}.

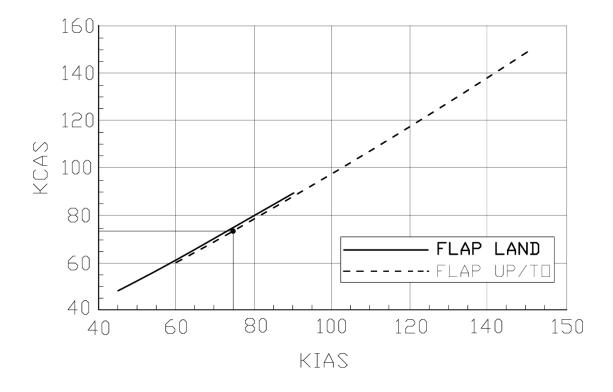


Figure 1 - IAS/CAS chart

Example:

<u>Given</u> <u>Find</u>
KIAS 75 KCAS 74

4. ICAO STANDARD ATMOSPHERE

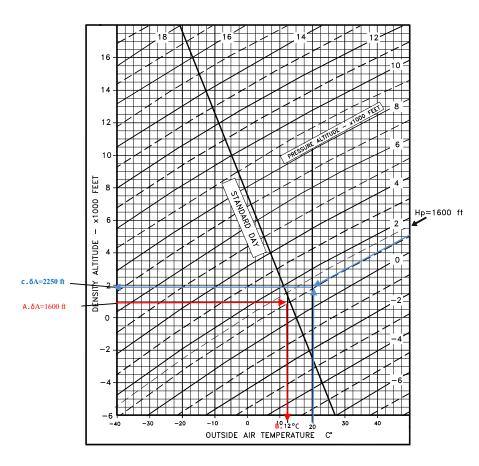
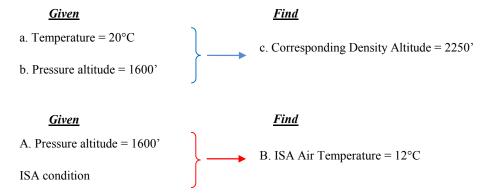



Figure 2 – ICAO chart

Examples:

5. STALL SPEED

Weight: 1230 kg (2712 lb) Throttle Levers: IDLE Landing Gear: Down CG: Most Forward (16.5%)

No ground effect

	BANK	STALL SPEED								
WEIGHT	Angle	FLAPS 0°		FLAPS	T/0	FLAPS FULL				
[kg]	[deg]	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS			
	0	66	65	59	57	54	55			
4000	15	67	66	58	58	55	56			
1230	30	71	70	61	61	59	59			
(FWD C.G.)	45	79	78	68	68	65	65			
	60	95	93	83	81	79	78			

NOTE

Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 250 ft with banking below 30°.

6. CROSSWIND

Maximum demonstrated crosswind is 17 Kts

 \Rightarrow *Example*:

<u>Given</u> <u>Find</u>

Wind direction (with respect to aircraft longitudinal axis) = 30°

Headwind = 17.5 Kts

Wind speed = 20 Kts

Crosswind = 10 Kts

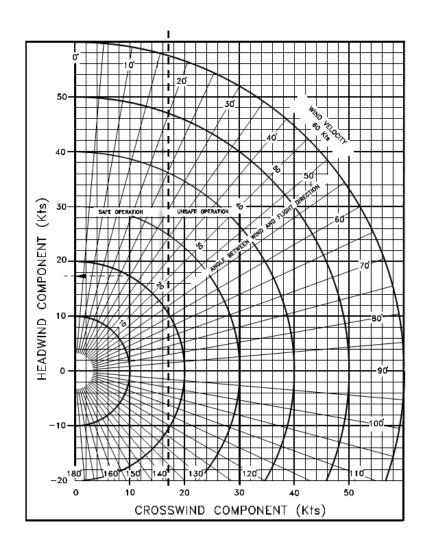


Figure 3 - Crosswind diagram

7. TAKEOFF PERFORMANCES

Weight = 1230 kg (2712 lb)

Flaps: T/O
Speed at Lift-Off = 65 KIAS
Speed Over 50ft Obstacle = 70 KIAS
Throttle Levers: Full Forward

Runway: Grass

Corrections

Headwind: - 2.5m for each kt (8 ft/kt)

Tailwind: + 10m for each kt (33ft/kt)

Paved Runway: - 6% to Ground Roll

Runway slope: +5% to Ground Roll for each +1%

Pressure				Distance [m]	
Altitude			Tempera	ture [°C]		ISA
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	207	263	328	401	301
3.L.	At 50 ft AGL	271	345	429	525	394
1000	Ground Roll	231	294	366	447	330
1000	At 50 ft AGL	303	385	479	586	432
2000	Ground Roll	258	328	409	500	362
2000	At 50 ft AGL	338	430	535	654	474
3000	Ground Roll	289	367	457	559	398
3000	At 50 ft AGL	378	480	598	731	521
4000	Ground Roll	323	411	511	625	438
4000	At 50 ft AGL	423	537	669	818	573
5000	Ground Roll	362	460	572	700	481
3000	At 50 ft AGL	473	602	749	916	630
6000	Ground Roll	405	515	642	785	530
8000	At 50 ft AGL	531	675	840	1027	694
7000	Ground Roll	455	578	720	880	584
7000	At 50 ft AGL	595	757	942	1152	765
8000	Ground Roll	511	650	809	989	645
8000	At 50 ft AGL	669	850	1059	1295	844
9000	Ground Roll	575	730	909	1112	712
3000	At 50 ft AGL	752	956	1190	1456	932
10000	Ground Roll	647	822	1023	1252	786
10000	At 50 ft AGL	847	1076	1340	1638	1029

4th Edition, Rev. 0

P2006T - Aircraft Flight Manual Page SW5 - 8

Weight = 1080 kg (2381 lb)

Corrections

Flaps: T/O
Speed at Lift-Off = 65 KIAS
Speed Over 50ft Obstacle = 70 KIAS
Throttle Levers: Full Forward

Headwind: - 2.5m for each kt (8 ft/kt)

Tailwind: + 10m for each kt (33ft/kt)

Paved Runway: - 6% to Ground Roll

Runway: Grass

Runway slope: + 5% to Ground Roll for each

+1%

+1

			+1%			
Pressure				Distance [m	J	
Altitude			Tempera			ISA
[ft]		-25	0	25	50	.0,1
S.L.	Ground Roll	148	188	234	286	215
J.L.	At 50 ft AGL	193	246	306	374	281
1000	Ground Roll	165	210	261	319	235
1000	At 50 ft AGL	216	274	341	418	308
2000	Ground Roll	184	234	291	356	258
2000	At 50 ft AGL	241	306	381	466	338
3000	Ground Roll	206	262	326	398	284
3000	At 50 ft AGL	269	342	426	521	372
4000	Ground Roll	230	293	364	446	312
4000	At 50 ft AGL	301	383	477	583	409
5000	Ground Roll	258	328	408	499	343
3000	At 50 ft AGL	338	429	534	653	449
6000	Ground Roll	289	368	457	559	378
6000	At 50 ft AGL	378	481	599	732	495
7000	Ground Roll	324	412	513	628	417
7000	At 50 ft AGL	425	540	672	822	545
9000	Ground Roll	364	463	577	705	460
8000	At 50 ft AGL	477	606	755	923	602
0000	Ground Roll	410	521	648	793	508
9000	At 50 ft AGL	536	682	849	1038	664
40000	Ground Roll	461	586	730	893	561
10000	At 50 ft AGL	604	767	955	1168	734

P2006T - Aircraft Flight Manual Page SW5 - 9

Weight = 930 kg (2051 lb)

Corrections

Flaps: T/O **Speed at Lift-Off =** 65 KIAS Speed Over 50ft Obstacle = 70 KIAS **Throttle Levers:** Full Forward

Headwind: - 2.5m for each kt (8 ft/kt) Tailwind: + 10m for each kt (33ft/kt) Paved Runway: - 6% to Ground Roll

Runway: Grass

Runway slope: +5% to Ground Roll for each

		+1%						
Pressure			l	Distance [m]			
Altitude			ISA					
[ft]		-25	0	25	50	ISA		
S.L.	Ground Roll	100	127	158	194	146		
J.L.	At 50 ft AGL	131	167	207	254	190		
1000	Ground Roll	112	142	177	216	160		
1000	At 50 ft AGL	146	186	231	283	209		
2000	Ground Roll	125	159	197	242	175		
2000	At 50 ft AGL	163	208	258	316	229		
3000	Ground Roll	140	177	221	270	192		
3000	At 50 ft AGL	183	232	289	353	252		
4000	Ground Roll	156	198	247	302	212		
4000	At 50 ft AGL	204	260	323	395	277		
5000	Ground Roll	175	222	277	338	233		
3000	At 50 ft AGL	229	291	362	443	305		
6000	Ground Roll	196	249	310	379	256		
0000	At 50 ft AGL	257	326	406	496	335		
7000	Ground Roll	220	280	348	426	282		
7000	At 50 ft AGL	288	366	455	557	370		
8000	Ground Roll	247	314	391	478	312		
8000	At 50 ft AGL	323	411	512	626	408		
9000	Ground Roll	278	353	440	538	344		
9000	At 50 ft AGL	364	462	575	704	450		
10000	Ground Roll	313	397	495	605	380		
10000	At 50 ft AGL	409	520	648	792	498		

4th Edition, Rev. 0

8. Take-off Rate of Climb at $V_{_{\Upsilon}}$

Power Setting: Maximum Continuous Power

Flaps: Take-Off
Landing Gear: Up

Landing Gear:	Up												
Weight	Pressure	Climb Speed		Rate o	of Climb [f	t/min]							
Weight	Altitude	V _y		Temperature [°C]									
[kg]	[ft]	[KIAS]	-25	0	25	50							
	S.L.	86	1276	1088	920	768	985						
	2000	83	1133	948	783	634	873						
	4000	79	990	809	646	500	761						
1220	6000	76	848	670	510	366	649						
1230	8000	73	707	531	374	233	537						
	10000	70	565	393	239	100	425						
	12000	67	425	256	104	-32	313						
	14000	64	285	118	-30	-164	201						
	S.L.	85	1507	1302	1119	954	1190						
	2000	82	1351	1150	970	808	1068						
	4000	79	1196	998	822	662	946						
1080	6000	76	1041	847	674	517	825						
1080	8000	73	887	696	526	372	703						
	10000	69	734	546	379	228	581						
	12000	66	581	397	232	84	459						
	14000	63	428	248	86	-59	338						
	S.L.	85	1803	1575	1372	1189	1451						
	2000	82	1630	1406	1206	1026	1315						
	4000	79	1457	1238	1041	864	1180						
020	6000	75	1286	1070	877	703	1045						
930	8000	72	1114	902	713	542	909						
	10000	69	944	735	549	382	774						
	12000	65	774	569	387	222	639						
	14000	62	604	404	224	63	503						

9. Take-off Rate of Climb at $\boldsymbol{V}_{\boldsymbol{x}}$

Power Setting: Maximum Continuous Power

Flaps: Take-Off
Landing Gear: Up

Landing Gear:	Up											
Weight	Pressure	Climb	Climb Rate of Climb at V _x [ft/min] Speed									
Weight	Altitude	V _x		Temperature [°C]								
[kg]	[ft]	[KIAS]	-25	0	25	50						
	S.L.	78	1214	1037	880	738	941					
	1000	76	1147	972	816	675	888					
	2000	75	1080	906	751	612	836					
1220	3000	74	1013	841	687	549	783					
1230	4000	73	946	776	623	486	731					
	5000	72	879	710	560	424	678					
	6000	71	813	645	496	361	626					
	7000	70	746	580	432	299	574					
	S.L.	78	1283	1102	940	794	1002					
	1000	76	1214	1034	874	729	949					
	2000	75	1145	967	808	664	895					
1000	3000	74	1076	900	742	600	841					
1080	4000	73	1008	833	676	535	787					
	5000	72	939	766	611	471	733					
	6000	71	871	699	545	407	679					
	7000	70	803	632	480	342	625					
	S.L.	78	1435	1243	1072	918	1138					
	1000	76	1362	1172	1002	849	1081					
	2000	75	1289	1101	932	780	1024					
020	3000	74	1216	1030	863	712	967					
930	4000	73	1144	958	793	644	910					
	5000	72	1071	888	724	576	853					
	6000	71	999	817	654	508	796					
	7000	69	927	746	585	440	739					

10. ENROUTE RATE OF CLIMB AT V_{γ}

Power Setting: Maximum Continuous Power

Flaps: Up

	Up									
Weight	Pressure	Climb Speed		Rate o	of Climb [f	t/min]				
Weight	Altitude	V _y		Temperature [°C]						
[kg]	[ft]	[KIAS]	-25	0	25	50				
	S.L.	84	1317	1135	973	827	1036			
	2000	83	1179	1000	841	697	928			
	4000	81	1041	865	709	568	819			
1230	6000	80	904	731	577	439	711			
1230	8000	78	767	598	446	310	603			
	10000	77	631	464	316	182	495			
	12000	75	495	332	186	54	387			
	14000	73	360	199	56	-73	279			
	S.L.	83	1560	1360	1182	1022	1251			
	2000	82	1408	1212	1037	879	1132			
	4000	80	1257	1064	892	737	1014			
1080	6000	78	1106	917	748	595	895			
1000	8000	76	956	770	604	454	776			
	10000	74	807	624	461	314	658			
	12000	72	657	478	318	173	539			
	14000	70	509	333	175	34	420			
	S.L.	82	1873	1649	1449	1269	1527			
	2000	81	1703	1483	1286	1109	1393			
	4000	79	1533	1317	1124	950	1260			
020	6000	77	1364	1151	962	791	1127			
930	8000	75	1196	987	800	632	994			
	10000	73	1028	823	639	474	861			
	12000	71	860	659	479	317	727			
	14000	69	693	496	319	160	594			

11. ENROUTE RATE OF CLIMB AT V_x

Power Setting: Maximum Continuous Power

Flaps: Up

Landing Gear: Up										
Weight	Pressure	Climb Speed	Rate of Climb at V _x [ft/min]							
veigne	Altitude	V _x		ISA						
[kg]	[ft]	[KIAS]	-25	0	25	50				
	S.L.	72	1241	1073	924	789	982			
	1000	72	1177	1011	863	729	932			
	2000	72	1114	949	802	669	882			
1220	3000	72	1050	887	741	609	832			
1230	4000	72	986	825	680	550	782			
	5000	72	923	763	619	490	732			
	6000	71	860	701	559	431	682			
	7000	71	797	639	498	371	632			
	S.L.	72	1480	1295	1130	981	1194			
	1000	72	1410	1226	1062	915	1139			
	2000	72	1340	1158	995	848	1084			
1000	3000	72	1269	1089	928	782	1029			
1080	4000	71	1199	1020	861	717	973			
	5000	71	1129	952	794	651	918			
	6000	71	1059	884	727	585	863			
	7000	71	990	815	660	520	808			
	S.L.	72	1787	1578	1391	1223	1463			
	1000	72	1707	1500	1315	1148	1401			
	2000	71	1628	1422	1239	1074	1339			
022	3000	71	1549	1345	1163	999	1277			
930	4000	71	1470	1268	1087	925	1215			
	5000	71	1391	1190	1012	851	1153			
	6000	71	1312	1113	936	777	1090			
	7000	70	1233	1036	861	703	1028			

12. One-Engine Rate of Climb at $V_{\mbox{\scriptsize YSE}}$

Power Setting: Maximum Continuous Power (operative engine)

propeller feathered (inoperative engine)

Flaps: Up

Landing Gear:	Pressure	Climb	Rate of Climb [ft/min]						
Weight	Altitude	Speed V _{ySE}		Tempera	ture [°C]		ISA		
[kg]	[ft]	[KIAS]	-25	0	25	50			
	S.L.	84	330	230	142	62	176		
	1000	83	292	193	106	26	147		
	2000	82	254	157	69	-9	117		
1220	3000	81	216	120	33	-44	87		
1230	4000	80	179	83	-3	-80	58		
	5000	79	141	46	-38	-115	28		
	6000	79	104	10	-74	-150	-1		
	7000	78	67	-27	-110	-185	-31		
	S.L.	80	436	330	235	149	271		
	1000	80	396	290	196	111	240		
	2000	79	355	251	157	73	208		
1080	3000	79	315	211	118	35	176		
1080	4000	79	275	172	80	-3	145		
	5000	79	234	132	41	-41	113		
	6000	78	194	93	3	-78	81		
	7000	78	154	54	-35	-116	50		
	S.L.	79	574	455	349	253	390		
	1000	79	529	411	305	211	355		
	2000	79	483	367	262	168	319		
930	3000	78	438	322	219	126	284		
330	4000	78	393	278	176	83	248		
	5000	78	348	235	133	41	213		
	6000	78	304	191	90	-1	178		
	7000	77	259	147	47	-43	142		

13. One-Engine Rate of Climb at V_{xSE}

Power Setting: Maximum Continuous Power (operative engine)

propeller feathered (inoperative engine)

Flaps: Up

Weight	Pressure	Climb Speed	Rate of Climb at V _{xSE} [ft/min]						
weight	Altitude	V _{xSE}		ISA					
[kg]	[ft]	[KIAS]	-25	0	25	50			
	S.L.	83	325	227	140	61	174		
	1000	82	288	191	104	26	145		
	2000	81	251	155	69	-9	116		
4220	3000	81	214	118	33	-44	86		
1230	4000	80	177	82	-2	-78	57		
	5000	79	140	46	-38	-113	28		
	6000	78	103	10	-73	-148	-1		
	7000	77	66	-26	-108	-183	-30		
	S.L.	79	424	321	229	147	265		
	1000	79	385	283	192	110	234		
	2000	79	346	245	155	73	204		
1000	3000	79	307	207	117	37	173		
1080	4000	79	268	169	80	0	143		
	5000	78	229	131	43	-36	112		
	6000	78	190	93	6	-73	81		
	7000	78	152	55	-31	-109	51		
	S.L.	78	556	442	341	249	380		
	1000	78	513	400	299	209	346		
	2000	78	469	358	258	168	312		
030	3000	78	426	316	217	128	279		
930	4000	78	383	274	176	87	245		
	5000	78	340	232	134	47	211		
	6000	77	298	190	93	7	177		
	7000	77	255	148	52	-34	143		

14. CRUISE PERFORMANCES

Weight	: 1150 kg	(2535 lb)		
Pressur	e Altitud	e: 0 ft		
		ISA – 30°C (-15°C)	ISA (15°C)	I.
RPM*	ΜΔΡ	F C **	F C **	

		ISA – 30°C (-15°C)			_	ISA (15°C)			ISA + 30°C (45°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2250	29.5	103%	143	28.6	97%	145	27.1	92%	146	25.8	
2250	28	88%	134	24.5	83%	136	23.2	79%	138	22	
2250	26	69%	122	19.2	65%	124	18.2	62%	125	17.3	
2250	24	59%	115	16.6	56%	116	15.7	53%	117	14.9	
2250	22	46%	103	12.8	43%	103	12.1	41%	103	11.5	
2250	20	39%	96	11	37%	95	10.4	35%	94	9.9	
2100	28	84%	132	23.5	80%	134	22.2	76%	135	21.1	
2100	26	66%	121	18.5	63%	122	17.5	60%	123	16.7	
2100	24	57%	114	16	54%	114	15.1	52%	115	14.4	
2100	22	43%	100	12.1	41%	100	11.5	39%	100	10.9	
2100	20	37%	92	10.2	35%	91	9.7	33%	89	9.2	
1900	26	61%	117	17.1	58%	118	16.2	55%	119	15.4	
1900	24	53%	110	14.9	50%	111	14.1	48%	111	13.4	
1900	22	41%	97	11.4	39%	97	10.8	37%	96	10.2	
1900	20	35%	89	9.6	33%	88	9.1	31%	85	8.7	

^{*} Propeller RPM

^{**} Fuel Consumption for each Engine

P2006T - Aircraft Flight Manual Page SW5 - 17

_	Weight: 1150 kg (2535 lb) Pressure Altitude: 3000 ft										
Fressur	e Aititud		յ։ - 30°C (-2	1°C)		ISA (9°C)		ISA	+ 30°C (3	9°C)	
RPM [*]	MAP [inHg]	PWR	KTAS	F.C.** [lt/hr]	PWR	TCAS	F.C.** [lt/hr]	PWR	KTAS	F.C.** [lt/hr]	
2388	26.4	92%	141	25.7	87%	143	24.3	83%	144	23.1	
2250	26.4	89%	139	25	85%	141	23.6	80%	143	22.4	
2250	26	85%	137	23.9	81%	138	22.6	77%	140	21.5	
2250	24	72%	128	20	68%	129	18.9	64%	130	18	
2250	22	57%	116	16	54%	117	15.1	51%	118	14.3	
2250	20	48%	108	13.4	45%	108	12.7	43%	108	12.1	
2100	26.4	85%	137	23.9	81%	138	22.6	77%	140	21.4	
2100	26	82%	134	22.8	77%	136	21.6	73%	137	20.5	
2100	24	69%	125	19.2	65%	127	18.1	62%	128	17.2	
2100	22	54%	114	15.2	51%	114	14.3	49%	115	13.6	
2100	20	45%	104	12.6	43%	104	11.9	41%	104	11.3	
1900	26.4	78%	132	21.9	74%	134	20.7	70%	135	19.6	
1900	26	75%	130	20.9	71%	131	19.8	67%	132	18.8	
1900	24	63%	121	17.7	60%	122	16.7	57%	123	15.9	
1900	22	50%	110	14.1	48%	110	13.3	45%	110	12.6	
1900	20	42%	101	11.7	40%	101	11.1	38%	100	10.6	

^{*} Propeller RPM

Weight: 1150 kg (2535 lb)
Pressure Altitude: 6000 ft

Pressure Altitude: 6000 Jt										
		ISA -	- 30°C (-2	27°C)		ISA (3°C)		ISA + 30°C (33°C)		
RPM [*]	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]
2388	23.6	83%	139	23.3	79%	141	22	75%	142	20.9
2250	23.6	81%	138	22.6	76%	139	21.4	73%	141	20.3
2250	22	68%	129	19.1	65%	130	18.1	61%	131	17.2
2250	20	57%	119	15.8	54%	120	14.9	51%	120	14.2
2250	18	46%	108	12.9	44%	108	12.2	41%	107	11.6
2100	23.6	77%	135	21.6	73%	137	20.4	69%	138	19.4
2100	22	65%	126	18.2	62%	127	17.2	59%	128	16.4
2100	20	54%	116	15	51%	116	14.1	48%	117	13.4
2100	18	44%	106	12.4	42%	106	11.7	40%	105	11.1
1900	23.6	71%	130	19.8	67%	132	18.7	64%	133	17.8
1900	22	60%	122	16.8	57%	123	15.8	54%	123	15
1900	20	50%	112	13.9	47%	112	13.1	44%	112	12.4
1900	18	41%	102	11.6	39%	102	10.9	37%	100	10.4
*	*- "									

^{*} Propeller RPM

^{**} Fuel Consumption for each Engine

Fuel Consumption for each Engine

P2006T - Aircraft Flight Manual Page SW5 - 18

Weight: 1150 kg (2535 lb)

Pressure Altitude: 9000 ft

ISA – 30°C (-33°C)

RPM* MAP F.C.**

		ISA – 30°C (-33°C)				ISA (-3°C)			ISA + 30°C (27°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2388	21.1	75%	137	20.9	71%	139	19.7	67%	140	18.7	
2250	21.1	73%	136	20.3	69%	137	19.2	65%	138	18.2	
2250	20	65%	130	18.3	62%	131	17.2	58%	131	16.3	
2250	18	53%	118	14.9	50%	119	14	48%	118	13.3	
2100	21.1	69%	133	19.4	65%	134	18.3	62%	135	17.4	
2100	20	62%	127	17.4	59%	128	16.4	56%	128	15.6	
2100	18	51%	116	14.2	48%	116	13.4	46%	116	12.7	
1900	21.1	64%	128	17.8	60%	129	16.8	57%	130	15.9	
1900	20	57%	122	16	54%	123	15.1	51%	123	14.3	
1900	18	47%	112	13.2	44%	112	12.4	42%	111	11.8	

^{*} Propeller RPM

Weight: 1150 kg (2535 lb)
Pressure Altitude: 12000 ft

	1100001071111000071										
		ISA – 30°C (-39°C)			ISA (-9°C)			ISA + 30°C (21°C)			
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2388	18.8	67%	135	18.8	63%	136	17.7	60%	136	16.7	
2250	18.8	65%	133	18.2	61%	134	17.2	58%	134	16.3	
2250	18	60%	129	16.8	57%	129	15.9	54%	129	15	
2100	18.8	62%	130	17.4	59%	131	16.4	56%	132	15.5	
2100	18	58%	126	16.1	54%	126	15.2	51%	126	14.4	
1900	18.8	57%	125	15.9	54%	126	15	51%	126	14.2	
1900	18	53%	121	14.8	50%	121	13.9	47%	121	13.2	

^{*} Propeller RPM

Fuel Consumption for each Engine

Fuel Consumption for each Engine

15. LANDING PERFORMANCES

Weight = 1230 kg (2712 lb)

Flaps: LAND
Short Final Approach Speed = 70 KIAS

Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt)

Tailwind: + 11m for each kt (36ft/kt)

Paved Runway: - 2% to Ground Roll
Runway slope: - 2.5% to Ground Roll for

each +1%

Pressure		Distance [m]							
Altitude			ISA						
[ft]		-25	0	25	50	ISA			
6.1	Ground Roll	199	219	239	259	231			
S.L.	At 50 ft AGL	308	334	359	384	349			
1000	Ground Roll	206	227	248	269	238			
1000	At 50 ft AGL	318	344	370	396	358			
2000	Ground Roll	214	236	257	279	245			
2000	At 50 ft AGL	328	355	382	408	367			
3000	Ground Roll	222	244	267	289	252			
3000	At 50 ft AGL	348	377	406	434	385			
4000	Ground Roll	230	254	277	300	260			
4000	At 50 ft AGL	348	377	406	434	385			
5000	Ground Roll	239	263	287	311	268			
3000	At 50 ft AGL	359	389	419	448	395			
6000	Ground Roll	248	273	298	323	276			
0000	At 50 ft AGL	371	402	432	463	405			
7000	Ground Roll	258	284	310	336	285			
7000	At 50 ft AGL	382	415	446	478	416			
8000	Ground Roll	268	295	322	349	294			
8000	At 50 ft AGL	395	428	461	494	427			
9000	Ground Roll	278	306	334	362	303			
3000	At 50 ft AGL	408	442	476	510	438			
10000	Ground Roll	289	318	348	377	313			
10000	At 50 ft AGL	421	457	492	527	450			

P2006T - Aircraft Flight Manual Page SW5 - 20

Weight = 1080 kg (2381 lb)

Corrections

Flaps: LAND
Short Final Approach Speed = 70 KIAS

Headwind: - 5m for each kt (16 ft/kt) **Tailwind:** + 11m for each kt (36ft/kt)

Throttle Levers: *Idle*Runway: *Grass*

Paved Runway: - 2% to Ground Roll
Runway slope: - 2.5% to Ground Roll for

each +1%

Pressure		Distance [m]						
Altitude			ISA					
[ft]		-25	0	25	50	ISA		
S.L.	Ground Roll	175	192	210	227	203		
3.L.	At 50 ft AGL	271	293	315	337	306		
1000	Ground Roll	181	199	218	236	209		
1000	At 50 ft AGL	279	302	325	348	314		
2000	Ground Roll	188	207	226	245	215		
2000	At 50 ft AGL	288	311	335	358	322		
3000	Ground Roll	195	215	234	254	222		
3000	At 50 ft AGL	306	331	356	381	338		
4000	Ground Roll	202	223	243	263	228		
4000	At 50 ft AGL	306	331	356	381	338		
5000	Ground Roll	210	231	252	273	235		
3000	At 50 ft AGL	315	342	368	394	347		
6000	Ground Roll	218	240	262	284	243		
0000	At 50 ft AGL	325	353	380	406	356		
7000	Ground Roll	226	249	272	295	250		
7000	At 50 ft AGL	336	364	392	420	365		
8000	Ground Roll	235	259	283	306	258		
8000	At 50 ft AGL	347	376	405	434	375		
9000	Ground Roll	244	269	294	318	266		
3000	At 50 ft AGL	358	388	418	448	385		
10000	Ground Roll	254	280	305	331	275		
10000	At 50 ft AGL	370	401	432	463	395		

P2006T - Aircraft Flight Manual Page SW5 - 21

Weight = 930 kg (2051 lb)

Flaps: LAND

Short Final Approach Speed = 70 KIAS

Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt)

Tailwind: + 11m for each kt (36ft/kt)

Paved Runway: - 2% to Ground Roll

Runway slope: - 2.5% to Ground Roll for

each +1%

Pressure		Distance [m]							
Altitude			Tempera	ture [°C]		ISA			
[ft]		-25	0	25	50	ISA			
S.L.	Ground Roll	150	166	181	196	175			
3.L.	At 50 ft AGL	233	252	271	290	264			
1000	Ground Roll	156	172	187	203	180			
1000	At 50 ft AGL	240	260	280	299	270			
2000	Ground Roll	162	178	194	211	185			
2000	At 50 ft AGL	248	268	288	309	277			
3000	Ground Roll	168	185	202	219	191			
3000	At 50 ft AGL	263	285	307	328	291			
4000	Ground Roll	174	192	209	227	197			
4000	At 50 ft AGL	263	285	307	328	291			
5000	Ground Roll	181	199	217	235	203			
3000	At 50 ft AGL	272	294	317	339	299			
6000	Ground Roll	188	207	226	244	209			
0000	At 50 ft AGL	280	304	327	350	307			
7000	Ground Roll	195	215	234	254	215			
7000	At 50 ft AGL	289	313	338	361	315			
8000	Ground Roll	203	223	243	264	222			
8000	At 50 ft AGL	299	324	349	373	323			
9000	Ground Roll	210	232	253	274	229			
3000	At 50 ft AGL	308	334	360	386	331			
10000	Ground Roll	219	241	263	285	237			
10000	At 50 ft AGL	319	346	372	399	340			

P2006T - Aircraft Flight Manual Page SW5 - 22

16. BALKED LANDING CLIMB GRADIENT

Flight conditions (ISA and SL):

Weight: 1230 kg (2712 lb)

Throttle leversBoth FULL FORWARD

Flaps T/O

Landing gear DOWN

Weight *MTOW 1230kg (2712 lb)*

Speed 72 KIAS

Climb gradient 9.4% (5.4°)

17. Noise data

Noise level, determined in accordance with ICAO/Annex 16 4th Ed., July 2005, Vol. I°, Chapter 10, is **72.82** dB(A).

GARMIN G950 IFDS – Increased MTOW (1230 kg)

P2006T - Aircraft Flight Manual Page SW5 - 23

SECTION 6 - WEIGHT and BALANCE

INDEX

1. IN	TRODUCTION	3
2. WI	EIGHING PROCEDURES	4
2.1.	Preparation	4
	Levelling	
	Weighing	
	Determination of C.G. location	
	Weighing record	
	Weighing record (II)	
3. WI	EIGHTS AND C.G	7
4. BA	AGGAGE LOADING	8
5. EG	QUIPMENT LIST	10

1. INTRODUCTION

This section describes the procedure for establishing the basic empty weight and the moment of the aircraft. Loading procedure information is also provided.

Aircraft must be operated in accordance with the limits concerning the maximum takeoff weight and CG excursion as reported in Flight Manual Section 2.

Pilot is responsible for checking the weight and CG excursion are compliant with the related limits. CG excursion and weight limits are reported in Section 2 – Limitations.

2. WEIGHING PROCEDURES

2.1. PREPARATION

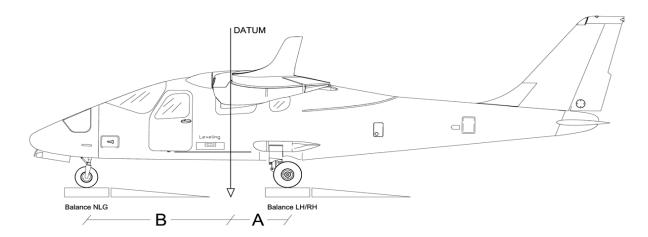
- Carry out weighing procedure inside closed hangar
- Remove from cabin any object unintentionally left
- Make sure Flight Manual and mandatory documents are on board
- Align nose wheel
- Drain fuel via the specific drain valve
- Oil, hydraulic fluid and coolant liquid at the operating levels
- Move sliding seats to most forward position
- Raise flaps to fully retracted position
- Place control surfaces in neutral position
- Place scales (min. capacity 300 kg) under each wheel

2.2. LEVELLING

- Level the aircraft (the reference for longitudinal levelling is made putting a spirit-level on the cabin floor as shown in the Aircraft Maintenance Manual).
- Adjust longitudinal attitude deflating nose tire

2.3. WEIGHING

- Record weight shown on each scale
- Repeat weighing procedure three times
- Calculate empty weight


2.4. DETERMINATION OF C.G. LOCATION

- Drop a plumb bob tangent to the wing leading edge and trace a reference mark on the floor (see Figure on Para. 2.5 or 2.6)
- Repeat the operation for other wing
- Stretch a taught line between the two marks
- Measure the distance between the reference line and both main and nose wheel axis (A and B distances respectively)
- Using recorded data it is possible to determine the aircraft C.G. location and the aircraft moment (see following table)

2.5. WEIGHING RECORD

Model **P2006T** S/N:______ Weighing no. ____ Date:_____

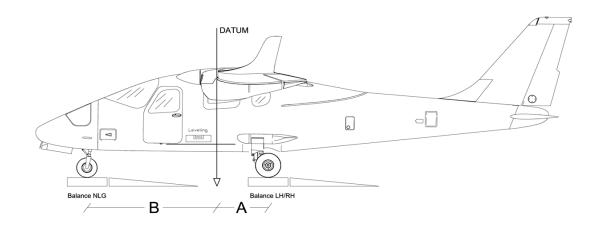
Datum: leading edge vertical

	Kg or Lbs
Nose wheel weight	$\mathbf{W}_{1} =$
LH wheel weight	$W_L =$
RH wheel weight	$W_R =$
$W_2 = W_L + W_R =$	

	Meters or feet
Plumb bob distance LH wheel	$A_L =$
Plumb bob distance RH wheel	$A_R =$
Average distance (A _L + A _R)/2	A =
Plumb bob distance from nose wheel	B =

Empty weight $We = W_1 + W_2 =$ [kg] or [lbs]

$$D = \frac{W_2 \cdot A - W_1 \cdot B}{We} =$$
 [m] or [Ft] $D\% = \frac{D}{1.339} \cdot 100 =$


Empty weight moment: $M = (D \cdot We) = [m \cdot Kg]$ or [Ft \cdot Lbs]

Maximum takeoff weight	$W_T =$	[kg] or [lbs]	Signature
Empty weight	We =	[kg] or [lbs]	
Max. useful load W _T - We	Wu =	[kg] or [lbs]	

2.6. WEIGHING RECORD (II)

Model **P2006T** S/N:______ Weighing no. ____ Date:_____

Datum: leading edge vertical

	Kg or Lbs
Nose wheel weight	$\mathbf{W}_{1} =$
LH wheel weight	$W_L =$
RH wheel weight	$W_R =$
$W_2 = W_L + W_R =$	

	Meters or feet
Plumb bob distance LH wheel	$A_L =$
Plumb bob distance RH wheel	$A_R =$
Average distance (A _L + A _R)/2	A =
Plumb bob distance from nose wheel	B =

Empty weight $We = W_1 + W_2 =$ [kg] or [lbs]

$$D = \frac{W_2 \cdot A - W_1 \cdot B}{We} =$$
 [m] or [Ft] $D\% = \frac{D}{1.339} \cdot 100 =$

Empty weight moment: M = (D We) =[*m* · *Kg*] or [Ft · Lbs]

Maximum takeoff weight	$W_T =$	[kg] or [lbs]	Signature
Empty weight	We =	[kg] or [lbs]	
Max. useful load W _T - We	Wu =	[kg] or [lbs]	

3. **WEIGHTS AND C.G.**

C.G. position can be defined by means of the chart below.

The pilot is responsible for ensuring the correct useful load loading.

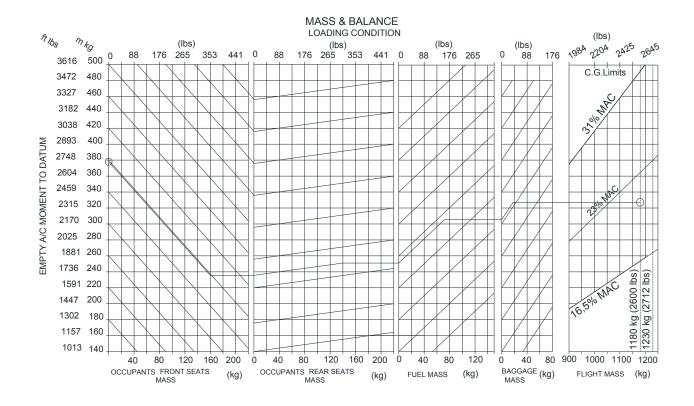


Figure 1

Example

A/C empty mass:	moment 378 kgm
A/C empty mass	790 kg
Occ. front seats	160 kg
Occ. rear seats	140 kg
Fuel	72kg
Baggage	18 kg
A/C T.O. weight	1180kg

BAGGAGE LOADING

The baggage loading in the dedicated compartment must be carried out in accordance with diagram addressed on PAR. 03 and with C.G. excursion and weight limitations reported in Section 2.

Pilot is provided with a red tie-down net and snap fasteners allowing for securing the loads on the compartment floor.

Loading the baggage, make sure that you correctly stretched the net which must be secured to the four vertices of the floor.

5. EQUIPMENT LIST

The following is a list of equipment which may be installed in the *P2006T*. The items marked with an "X" were installed on the airplane described at the beginning of the list and they are included in the Basic Empty Weight.

It is the owner's responsibility to retain this equipment list and amend it to reflect changes in equipment installed in this airplane.

	EQUIPMENT LIST	AIRCRAFT S/N DATE:			
Ref.	DESCRIPTION	P/N	Inst	W EIGHT [<i>kg]</i>	А км [м]
	INSTRUMENTATI	ON			
					
A1	GARMIN G950 IFDS				
A2	SOFTWARE SD CARD P/N				
A3	2 nd airspeed indicator – UMA T6-311 – 200			0.37	-1.4
A4	2 nd airspeed indicator - UMA T6-311 -			0.37	-1.4
A5	2 nd attitude indicator - Kelly Manufacturing RCA26AK-3			1	-1.4
A6	2 nd altimeter - Altimeter - United Instruments 5934PM-3A84 01770028-05			0.6	-1.4
A7	Turn and bank indicator – RCA 83A-11			1.2	-1.4
A8	Mid-Continent MD302 stand-by instrument			0.73	-1.4
	AVIONICS & MISCELL	ANEOUS			
B1	Garmin GNS-430W GPS/WAAS COMM/NAV			3	-1.4
B2	Garmin GNS-530W GPS/WAAS COMM/NAV			3,18	-1.4
В3	Garmin GMA340 audio panel			0.8	-1.4
B4	Garmin GMA347 audio panel			0.8	-1.4
В5	Garmin SL30 VHF COMM/NAV			1.3	-1.4
В6	Transponder-Garmin GTX328			1.9	-1.4
В7	Transponder-Garmin GTX330			1.5	-1.4
В/	Transponder-Garmin GTX33			1.5	-1.4
В8	Becker BXP 6401-2-(01) Mode S transponder			0.8	-1.4
В9	Vor/Loc/GS Indicator–Garmin GI106A			0.4	-1.4
B10	Vor/Loc/GS Indicator -MID Continental MD 200-306			0,4	-1,44
B11	Directional Gyro - Kelly Manufacturing RCA15AK-1			1	-1.4
B12	Directional Gyro - Kelly Manufacturing RCA15AK-16			1	-1.4
	HONEYWELL Bendix/King KCS 55A Compass System				
B13	KI 525A Pictorial Navigation Indicator			1.53	-1.4
B14	KG 102A Directional Gyro			1.95	1
B15	KA 51B Slaving Control and Compensator Unit			0.1	-1.4
B16	KMT 112 Magnetic Slaving Transmitter			0.15	2.2
	HONEYWELL Bendix/King ADF KR87 system:				
B17	ADF KR87 receiver			1.5	1
B18	Indicator KI 227			0.3	-1.4

	EQUIPMENT LIST	AIRCRAFT S/N DATE:			
Ref.	DESCRIPTION	P/N	Inst	W EIGHT [<i>kg]</i>	Акм [м]
	AVIONICS & MISCELLANE	OUS (CONT'D)		1	
B19	Indicator KI 229			1.3	-1.4
B20	Static inverter Marathon PC-50			2	1
	HONEYWELL Bendix/King DME KN 63 system	l l			
B21	Indicator DME KDI 572			0.4	-1.4
B22	Transceiver DME KN 63			1.3	1
	S-TEC Fifty Five X Autopilot System				
	Turn coordinator S-TEC 6405-14L			0.01	-1.4
B23	(Mid Continent 1394T100-14RB)			0.81	
D24	Turn coordinator Mid Continent 1394T100-7Z			0.81	-1.4
B24	PRGMR/CMPTR 01192-0-2TF			1.36	-1.4
B25 B26	Roll servo 0105-5-R9 Pitch servo 0107-11-P4			1.31	-0.71 3.55
B27	Altitude Transducer 0111			0.2	-1.9
B28	Pitch Trim servo S-TEC 0105- T11			1.3	2.8
B29	ELT Adams Aviation Artex ME406			0.9	0.8
B30	LH Front and rear seat GEVEN E5-01-003-T01 or E5-01-007-T01 or E5-01-009-T03			9	- 0.893
B31	RH Front and rear seat GEVEN E5-01-004-T01 or E5-01-008-T01 or E5-01-010-T03			9	0.226
B32	Fire extinguisher Fire Fighting Enterprises Ltd BA51015-3			2	-1.5
B33	First aid kit Euroferramenta s.r.l. FIA270160			0.2	0.8
B34	Torch			0.15	-1.5
B35	Battery GILL35 - 13Volt - 23Ah			12.2	3.7
B36	ELT KANNAD 406			0.9	0.8
B37	Fire extinguisher H3R-Aviation RTA-600			0.8	-1.5

SEZIONE 7 – AIRFRAME and SYSTEMS DESCRIPTION

INDEX

INTRODUCTION	3
AIRFRAME	
POWERPLANT	9
PEDESTAL CONTROLS	12
CABIN OVER-HEAD PANEL CONTROLS	15
INTERNAL LIGHTS	16
EXTERNAL LIGHTS	17
FUEL SYSTEM	19
LANDING GEAR SYSTEM	21
. BRAKES	25
. VENTILATION	26
. CABIN HEAT	26
. SEATS AND SAFETY BELTS	26
. DOORS	27
. BAGGAGE COMPARTMENT	
. PLACARDS	31
. INSTRUMENTS PANEL	37
. ELECTRICAL SYSTEM	40
	POWERPLANT PEDESTAL CONTROLS CABIN OVER-HEAD PANEL CONTROLS INTERNAL LIGHTS EXTERNAL LIGHTS FUEL SYSTEM LANDING GEAR SYSTEM BRAKES VENTILATION CABIN HEAT SEATS AND SAFETY BELTS DOORS BAGGAGE COMPARTMENT PLACARDS

1. INTRODUCTION

This section provides aircraft and systems description and operation.

2. AIRFRAME

2.1. WING

Each wing consists of a central light alloy torque box which carries all the wing bending, shear and torque loads; an aluminium leading edge is attached to the front spar while flap and aileron are hinged to the rear spar.

The torque box houses an integrated fuel tank and supports the engine mount.

Flap and aileron, respectively located inboard and outboard of wing and made up of light alloy, are constructed with a central spar to which front and rear ribs are jointed. Wrapped-around aluminium stressed skin panels cover all the structures. Steel alloy attachments connect left and right wing to each other.

Following figure shows the left wing fitted with the engine nacelle, fuel tank and composite winglet. Steel alloy attachments link left and right wing to each other.

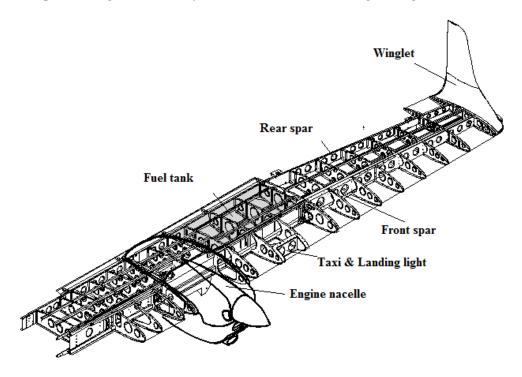


Figure 1. – Left wing structure

2.2. **FUSELAGE**

The fuselage is constituted by a light-alloy semi-monocoque structure wrappedaround by stressed skin panels. Radome and stern fairing are of composite material. Cabin and baggage compartment floor is a warping of beams and keelsons supporting the seats guides and other components.

Two spar frames support on the top the wings attachments and on the bottom the sponson beans sustaining the main landing gear. The forward frame, to which radome is connected, supports a steel trestle to which the nose landing gear is connected.

The front and rear seats access occur by means of two doors located in the opposite sides of the fuselage; a ditching emergency exit is available on the top of the cabin. In tail cone, two spar frames support the horizontal and vertical empennages attachments.

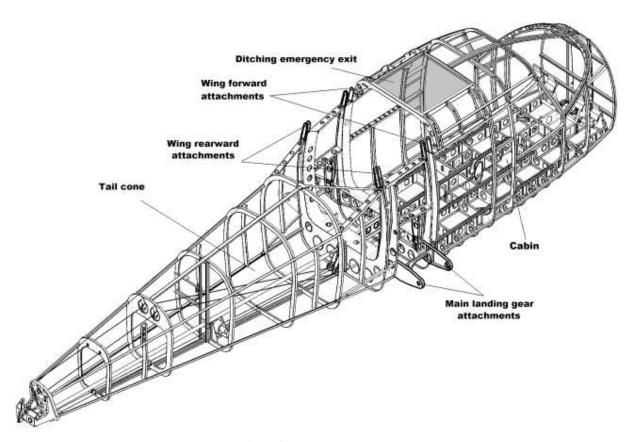


Figure 2. – Fuselage structure

2.3. **EMPENNAGES**

The vertical tail is entirely metallic: vertical fin is made up of a twin spar with aluminium alloy stressed skin. Rudder, providing directional control of the airplane, is made up of aluminium alloy.

The rudder is connected to the vertical tail at two hinge points. A trim tab system increases directional stability of the airplane.

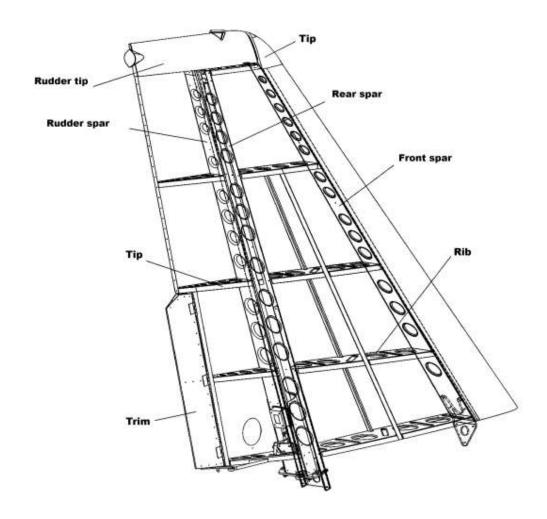


Figure 3. – Vertical empennage structure

The horizontal empennage is an all-moving type (stabilator); its structure consists of a twin spar to which front and rear ribs are jointed and it is covered by stressed aluminium alloy skin. The trim tab completes the assy.

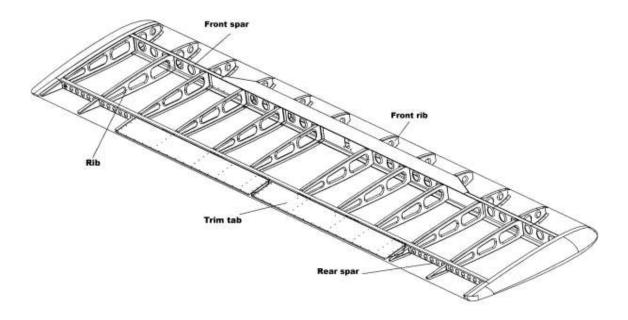


Figure 4. – Stabilator structure

2.4. FLIGHT CONTROLS

The main flight control system controls the airplane in three axes. All primary controls (ailerons, rudder and stabilator) are manually operated by a conventional control column and rudder pedals, pulleys, cables, bellcranks and rods.

The secondary flight controls consist of a two-axis trim system and a flaps system.

Complete dual controls are provided for pilot and co-pilot.

Longitudinal control acts through a system of push-pull rods connected to the control column and moving the stabilator whose anti-tab winglet works also as trim tab. Autopilot pitch servo (if installed) is connected to the push-pull rods system through driving cables.

Longitudinal trim is performed by a small tab positioned on the stabilator and manually operated via a control wheel positioned between the two crew seats. As optional, it is available an electrically operated longitudinal trim which it is also controlled by the autopilot system, when installed.

Trim position is monitored by an indicator on the instrument panel. A trim disconnect toggle switch is provided.

Ailerons control is of mixed type with push-rods and cables; a cable control circuit is confined within the cabin and it is connected to a pair of push-pull rod systems positioned in each main wing which control ailerons differentially.

The U-shaped control wheels, hinged on the top of the control column, control the ailerons. Control wheel motion is transferred to the ailerons through a cable loop, up to the interconnecting rod linking the two push-pull rod systems which finally transmit the motion to the ailerons.

When either aileron control wheel is rotated, the crossover cable rotates the other control wheel.

The left aileron has a trim tab adjustable on ground: its deflection allows for lateral trimming of the airplane.

Both flaps are extended via a single electric actuator controlled by a switch on the instrument panel. Flaps act in continuous mode; the analogue indicator displays three markings related to 0° , takeoff (T/O) and landing (FULL) positions.

An aural warning is generated whenever the flaps are lowered to the FULL position and the landing gear is not down-locked.

Rudder is operated through a cable system. A rudder trim tab allows aircraft directional trimming, especially in case of OEI operation: it is electrically operated via a switch located on the central console placed between crew seats.

Its position is monitored by an indicator on the instrument panel. A trim disconnect toggle switch is provided.

3. POWERPLANT

P2006T is equipped with two four-cylinder four-stroke Rotax 912S engines of 98hp (73kW) each, both rotating clockwise. These are partially liquid cooled and they feature an integrated reduction gear driving constant speed propellers with pitch feathering devices.

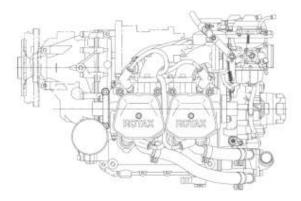


Figure 5. - Rotax 912S

Cooling system is designed for liquid cooling of the cylinders heads and ram-air cooling of the cylinders. The liquid system is a closed circuit with an overflow bottle and an expansion tank.

The coolant flow is forced by a water pump, driven from the camshaft, from the radiator to the cylinder heads. From the top of the cylinder heads the coolant passes on to the expansion tank (item 1, Figure below). Since the standard location of the radiator (2) is below engine level, the expansion tank, located on top of the engine, allows for coolant expansion.

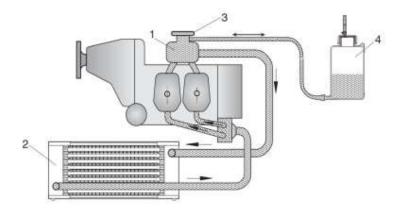


Figure 6. – Liquid cooling system schematic

The expansion tank is closed by a pressure cap (3) fitted with pressure relief valve and return valve. At temperature rise and expansion of the coolant, the pressure relief valve opens and the coolant will flow via a hose at atmospheric pressure to the transparent overflow bottle (4). Once cooled down, the coolant will be sucked back into the cooling circuit.

The engine is provided with a dry sump forced lubrication system with an oil pump with integrated pressure regulator. A thermostatic valve regulates the oil flow to the heat exchanger (oil radiator) on the basis of oil temperature: this allows the engine starting in cold conditions.

The oil tank is installed behind the firewall protected from heat sources. Some holes on the bracket structure allow for air ventilation

The reservoir is fitted with a dipstick; a hose, immediately located beneath the filler cap, allows for oil relief discharged in a safe zone in the cowling, far from exhausts and other heat sources.

Following powerplant instruments are provided:

- LH and RH RPM Indicator
- LH and RH Manifold Pressure Indicator
- ➤ LH and RH Oil Pressure Indicator
- ➤ LH and RH Oil Temperature Indicator
- ➤ LH and RH Cylinder Head Temperature Indicator

3.1. **ENGINE FEATURES**

Manufacturer	Bombardier-Rotax GmbH
Model	912 S3
Certification basis	FAR 33, Amendment 15
Type Certificate	EASA TCDS no. E.121 dated 1st April 2008
Engine type	4 cylinders horizontally opposed with 1352 c.c. of overall displacement, liquid cooled cylinder heads, ram-air cooled cylinders, two carburetors, integrated reduction gear box with shock absorber.
Maximum power	73.5 kW (98.6hp) @ 5800 rpm –5 min. maximum
(at declared rpm)	69.0 kW (92.5hp) @ 5500 rpm (continuous)

3.2. **PROPELLER FEATURES**

Manufacturer	MT Propeller
Type certificate	LBA 32.130/086 (MTV-21 series)
Model	MTV-21-A-C-F/CF178-05
Blades/hub	2 wood/composite blades, aluminium hub
Diameter	1780 mm (no reduction allowed)
Туре	Variable pitch hydraulically controlled

3.3. **PROPELLER GOVERNOR FEATURES**

Manufacturer	MT Propeller
Model	P-875-12
Type	Hydraulic

4. PEDESTAL CONTROLS

Following picture shows the controls installed on the central pedestal.

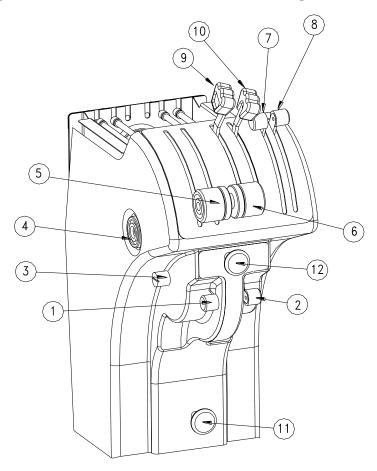


Figure 7. - Pedestal controls

No	Description
1 and 2	Choke control
3	Choke friction knob
4	Upper levers friction knob
5-6	LH and RH Throttle lever
7-8	LH and RH Carburetor Heating lever
9-10	LH and RH Propeller Pitch Control lever
11	Parking brake
12	Windshield defrost control knob

Aircraft not embodying the Design Change 2006/66 "New Powerplant control setting layout" or the SB 039-CS "P2006T New powerplant controls layout" feature a different pedestal levers layout: propeller and carb. heat levers position are inverted.

It is possible to adjust the throttle, propeller and carburettor heat levers friction by appropriately tightening the friction knob located on the central console.

A similar device is provided for engine choke controls.

Carburettor heat control knobs are located between throttle and propellers levers; when the knobs are fully pulled backwards, carburettors receive maximum hot air.

During normal operations, the knobs are fully forward set (carburettors heating set to OFF).

The console houses also the parking brake and windshield defrost control knobs.

5. CABIN OVER-HEAD PANEL CONTROLS

Following picture shows the controls installed on the cabin over-head panel.

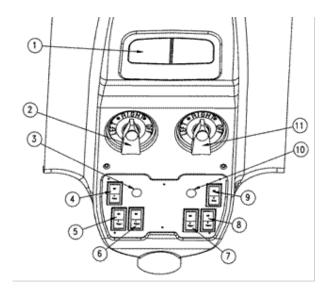


Figure 8. - Cabin head panel controls

No	Description
1	Cabin Light
2	LH Fuel selector valve
3	LH Electric Starter
4	LH electric fuel pump
5	LH Engine ignition 1
6	LH Engine ignition 2
7	RH Engine ignition 1
8	RH Engine ignition 2
9	RH electric fuel pump
10	RH Electric Starter
11	RH Fuel selector valve

6. INTERNAL LIGHTS

Internal lights system is composed by following equipment:

- Cabin light, providing lighting for crew and passengers compartment;
- Instruments lights, which in turn are composed by three sub-systems each one fitted with dimming device:
 - Switches built-in lights
 - Avionics lights
 - Cockpit lights
- Emergency light

The cabin light is a ceiling light, fitted with control switches, located on the overhead panel in correspondence of the crew seats.

About the **instrument lights** (controlled by a switch on the RH instrument panel), the switches built-in lights concern the instrument panels switches lighting, the avionics lights concern the avionic equipment lighting and the cockpit lights concern two lights located on the over-head panel illuminating LH and RH instrument panels (see Figure below).

All above mentioned lights are supplied by the battery bus apart from the Emergency light which is directly connected to the battery. It is a five-leds light located in the over-head panel (see Figure below) controlled by a switch installed on the LH breakers rack.

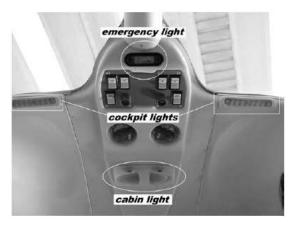


Figure 9. - Over-head panel lights arrangement

7. EXTERNAL LIGHTS

External lights system consists of the following equipment (see Figure below):

- NAV Lights: they provide, by means of three position lights, the aircraft flight direction identification.
- Strobe Lights: they provide aircraft identification to prevent collision. They are located, like the above mentioned NAV lights, on the winglets and on the top of the vertical fin.
- Taxi Light: supports taxi maneuvering on the ground at night. It is installed on the left wing leading edge.
- Landing Light: provides ground reference information during final approach, touchdown, ground roll and take off and illuminates any major obstructions in the airplane approach glide path or on runway at night. It is installed on the left wing leading edge.

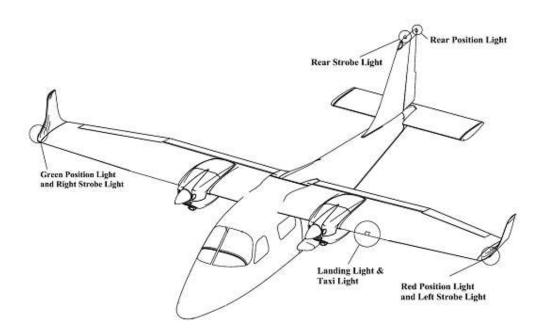


Figure 10. - External lights arrangement

All mentioned lights, whose circuits are protected by dedicated breakers, are activated by the related switches on the right instrument panel: see below.

Figure 11. – Lights switches panel

8. FUEL SYSTEM

Fuel system consists of two integrated tanks inside the wing torque boxes and fitted with inspection doors.

Each fuel tank has a capacity of 100 litres and is equipped with a vent valve (its outlet is located on the lower wing skin) and a sump fitted with a drain valve for water/moisture drainage purposes.

An electric fuel pump feeds the pertinent engine in case of engine-driven pump failure. The fuel Gascolator (a sediment-filter bowl) is located beneath the engine nacelle, between the fuel tank and the electrical pump, in correspondence of the fuel system lowest point. It is fitted with a drain valve which allows for the overall fuel line drainage.

Fuel quantity indicators and fuel pressure indicators for each engine are located on the RH instrument panel.

In normal conditions, to supply fuel to engines, each engine pump sucks fuel from the related tank; crossfeed is allowed by fuel valves located on the front spar and controlled by Bowden cables from the fuel selectors located on the cabin overhead panel.

Left fuel selector manages the left engine feeding, allowing fuel supply from the left fuel tank or from the right one (crossfeed).

Right fuel selector manages the right engine feeding, allowing fuel supply from the right fuel tank or from the left one (crossfeed).

Each selector can be set in OFF position only pulling and simultaneously rotating the lever: this avoids an unintentional operation.

Use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. Make reference to Rotax Maintenance Manual who provides dedicated checks due to the prolonged use of Avgas.

System schematic is shown on the following Figure.

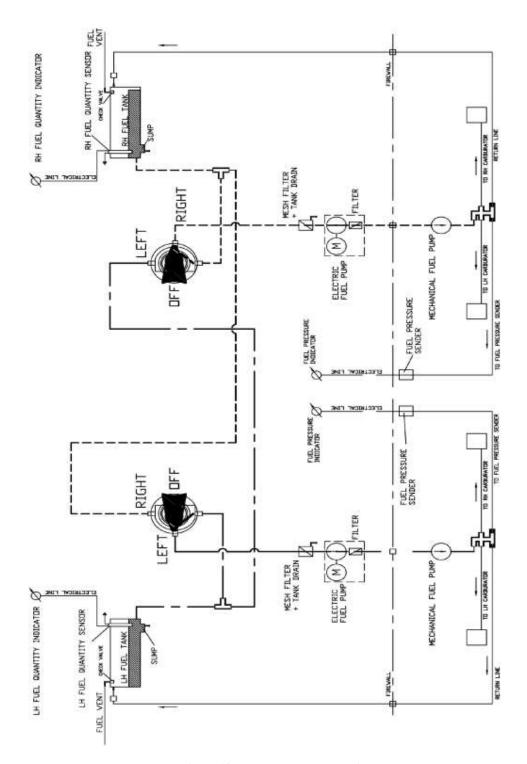


Figure 12. – Fuel system schematic

9. LANDING GEAR SYSTEM

The landing gear retraction system is of electro-hydraulic type, powered by a reversible pump which is electrically controlled by the LG control knob located on the LH instrument panel and by the legs position micro switches: these ones allow for detecting landing gear "down-locked" and "up" positions and for alerting the pilot by aural means should the approach and landing configuration be incorrect, in terms of flaps/throttle levers/landing gear position, in order to avoid an unintentional gear-up landing.

The system operates in two modes: normal and emergency.

Normal operation provides gear extension and retraction by means of hydraulic jacks. Gears extension is helped by gravity also.

Emergency operation only provides landing gear extension by means of a hydraulic accumulator which discharges pressurized oil in the above mentioned jacks.

HYDRAULIC SCHEMATIC DIAGRAM

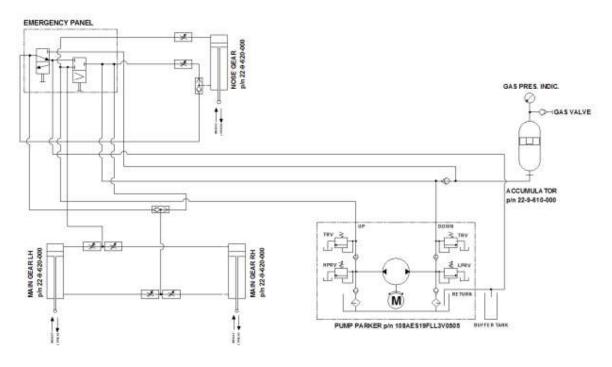


Figure 13. LG hydraulic system schematic

Hydraulic oil, contained in an integrated reservoir located inside the Hydraulic Power Pack, is pressurized by a reversible electric pump: as the LG control knob is placed in either the UP or DOWN position, the pump directs the fluid through the related pressure line toward each hydraulic jack.

In order to prevent an inadvertent LG retraction, the control knob must be pulled before being pushed upward for UP command.

The emergency hydraulic accumulator is used for the landing gear extension: normal extension line and emergency extension line converge in correspondence of the shuttle valves (two valves: the first one for NLG and the second one for MLG emergency operation).

The emergency accumulator nitrogen pressure indicator is located on the tail cone, left side; on ground, a red push-button located beneath the pressure indicator allows the electrical pump for charging the accumulator should the nitrogen pressure be below the lower limit indicated on the placard.

Emergency extension is controlled by two distributors located on the cabin floor, under a removable cover in correspondence of the pilot seat.

The LG indication system is electrical and it is composed by the following main components:

➤ UP/DN limit micro-switches

➤ leg position lights, 3 green

> transition light, 1 red

> pump light, 1 amber

> push to test

(6 couples, 2 for each leg)

(turned ON when the pertinent leg is extended and locked and located on the LH instrument panel) (turned ON during transition phases)

(GEAR PUMP ON caution amber light turned ON when the pump is electrically supplied) (for landing gear red and green lights operational check)

The three green lights illuminate only when the respective gear is "down-locked"; the red light indicates the gear is in transit "up" or "down" and the amber caution light GEAR PUMP ON indicates that the pump is electrically supplied.

The red transition light extinguishes only when all the three gear legs are "down-locked" or they are "up" while the amber caution light extinguishes only when the electrical pump is "off".

The Up/Down limit switches control the LG lights lighting and pump operation on the basis of LG configuration set by the pilot through the LG control knob.

A "push to test" button is used to check that the landing gear position lights are operating.

A warning horn alerts the pilot when the LG control knob is in UP position and at least one of the two throttle levers and/or flaps are respectively set to idle and to LAND position.

During emergency extension, LG position lights work as per normal extension mode: for this reason the LG control knob must be set on DOWN position before starting the emergency procedure.

IMPORTANT

After each emergency landing gear extension, apply the restoration procedure described in the AMM.

10. BRAKES

The A/C is provided with an independent hydraulically actuated brake system for each main wheel. A master cylinder is attached to each pilot/co-pilot's rudder pedal: see schematic below.

Hydraulic pressure, applied via the master cylinders, enters the brake via lines connected to an inlet fitting on the wheel brake caliper.

A parking brake valve, mounted in correspondence of the cabin floor and operated by a knob on the cockpit central pedestal, intercepts the hydraulic lines, once the system is pressurized, to hold the brake assemblies linings tightened round the main wheels brake discs.

Brakes can be operated from both pilot's and co-pilot's pedals: a single vented oil reservoir feeds the pilot side master cylinders which are connected, via hoses, with the co-pilot's side ones.

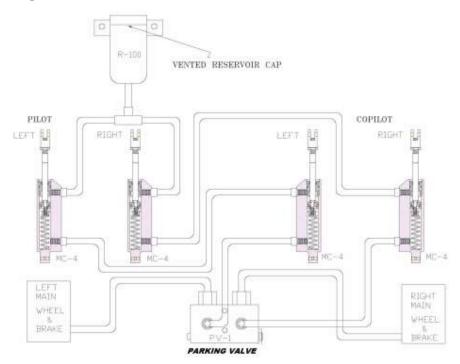


Figure 14. Brake system schematic

On the ground, when a pedal is pushed to steer the airplane, do not operate the opposite toe brake until the pedals are back aligned again. This prevents pedals mechanism from being damaged.

11. VENTILATION

If required, pilot allows for ram-air entering the cabin via the two outlet ports respectively located on the left and right side of the instruments panel. Other two ram-air ventilation outlets are located on the cabin head, in the passengers' zone.

12. CABIN HEAT

The cabin heating system utilizes hot air coming from engines heat exchangers: here cold ram-air is warmed by engine exhaust gases and then it is routed to the heating system hoses.

The cabin heat control knobs are positioned on the lower side of the LH instrument panel; when knobs are fully pulled, cabin receives maximum hot air.

Left knob controls the warm air from LH engine heat exchanger, right knob controls the warm air from RH engine heat exchanger.

Crew heating system outlet ports are located on the cabin floor, near the pedestal; for passengers zone it is provided an outlet port on the cabin head.

Windshield defrost is operated via a knob positioned on the pedestal: when knob is pulled the hot air flow for crew heating is deviated to the windshield.

13. SEATS AND SAFETY BELTS

In correspondence of the seats, three fitting points safety belts are provided; belt adjustment is via the sliding buckle located on the belt metal hook.

Seats are built with light alloy tube structure and synthetic material cushioning. It is possible to perform following seat adjustments:

Horizontal – pulling the lower front lever and sliding the seat

Vertical – operating the lever located on the outward seat side

Seat back inclination – unlocking it via the lateral knob

These adjustments ensure the crew and passengers comfort.

14. DOORS

The cabin main door is located forward, on the left side of the fuselage while the emergency exit (passenger door) is located aft, on the right side of the fuselage.

On the top of the cabin it is located the ditching emergency exit: see figure below.

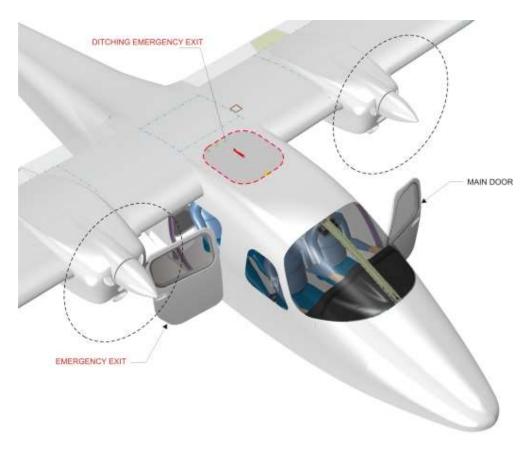


Figure 15. Doors location

Being the main door located in correspondence of the propeller disc, its operation is limited to the engine shut-down condition.

In fact, in order to prevent crew injuries, an electro-mechanical device locks the door latch when left engine runs. A pressure switch senses engine oil pressure and allows for electrical supply to a solenoid which engages the door lock mechanism.

This prevents the latch opening when left engine runs but, if needed, the device can be also manually by-passed operating either from the door inside panel or from outside. Instructions are reported on the placards near the by-pass lever, located in correspondence of the latch: to unlock it is necessary to push and hold the red tab down, after that the door can be opened operating the handle.

After engine shut-down, the pressure drop can have a certain delay, preventing the door from being opened by normal means: do not force the handle but operate the override system above mentioned.

In any case, the electric lock becomes disengaged after a complete loss of the electric power.

Two switches engage respectively when the door and the latch are closed. Should one or both switches be released, the MAIN DOOR OPEN warning light is turned ON.

The emergency exit is fitted with the same safety device: in this case the pressure switch allowing for solenoid operation is activated from right engine oil pressure line; should be the door "open" or "closed and unlocked", the REAR DOOR OPEN warning light is turned ON.

Any voluntary operation of the manual by-pass solenoid lock causes related door warning light is turned on.

The ditching emergency exit is manually operated turning the handle and pushing outward the door.

The yellow fluorescent painted handle, which can be operated also from outside, is fitted with a safety wire assuring removal effortlessness. When the door is open, it stays connected to the fuselage by means of two cables which allow for door opening forward.

15. BAGGAGE COMPARTMENT

The baggage compartment is located behind the passengers' seats. The baggage must be uniformly distributed on the floor and the weight cannot overcome 80kg. Make sure that the baggage is secured before the flight.

16. PLACARDS

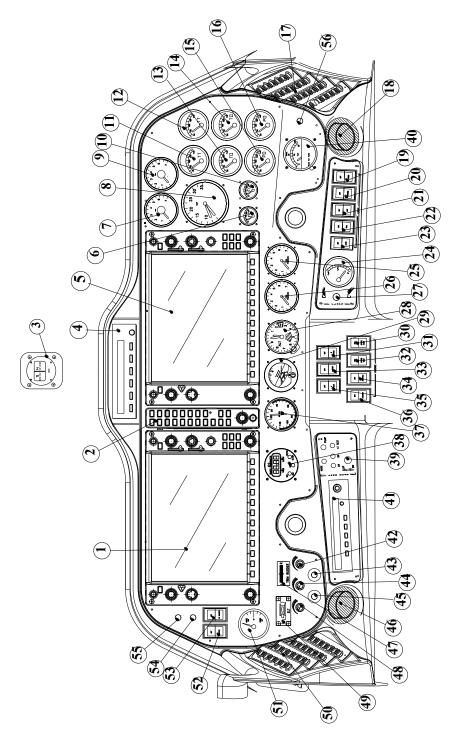
In addition to the limitation placards reported on Section 2, following placards are installed on the aircraft.

Additionally, nearby the placards listed below (English language), directly-translated placards in the language of the country in which the airplane is registered can be installed, when required by the specific NAA.

Description	Placard	Place
ELT equipment location	ELT	Baggage compartment, right side
First Aid Kit location	FIRST AID KIT	Baggage compartment, aft cover panel
Fire extinguisher location		Cockpit floor, pilot side
Emergency gear extension compartment location	PULL TO OPEN EMERGENCY GEAR EXTENSION MAX 93KIAS	Removable cap

Description	Placard	Place
Emergency gear extension instructions	EMERGENCY OPERATIONS FIRST DISCHARGE ON ON	Emergency distributors compartment
Alternate static port location	ALTERNATE STATIC PORT on the pedestal right side	Central pedestal, left side
Alternate static port operating instructions	ALTERNATE STATIC PORT OPEN	Central pedestal, right side
Static ports lo- cation	STATIC PORT KEEP CLEAN	Static ports: fuselage - both sides
Battery compartment location	OPEN HERE 1/4 TURN BATTERY INSIDE	Fuselage tail, left side
EXT power connection: socket schematic and instructions	EXT POWER CONNECTION (MASTER OFF) 12 VDC	Fuselage tail, left side

Description	Placard	Place
Landing gear hydraulic ac- cumulator: low pressure limit	LOW PRESSURE LIMIT 20 BAR	LG hydraulic compartment cap (fuselage tail, left side)
LG hydraulic compartment location	LANDING GEAR HYDRAULIC COMPARTMENT	Fuselage tail, left side, in correspondence of LG hydraulic compartment cap
Towing limitations	CAUTION TOWING MAXIMUM TURNING ANGLE: 20° EITHER SIDE OF CENTER	Nose LG forward door
Stabilator ex- cursion range	5° C 0° C 16°	Fuselage tail, left side, in correspondence of the stabilator leading edge
Aircraft grounding	Close to the cap	
Engine coolant expansion tank location	COOLANT	Engine nacelle top side


Description	Placard	Place
Steel boards: a/c identifica- tion marks	O <i>I-TELT</i> O TECNAM srl O A/c: P2006T S/N: 001 T.C.: n° EASA X	Fuselage tail, left side
	(Sample)	
Main LG tires inflation pressure values	MAIN LG 2.3bar/33psi	MLG leg, LH and RH
Nose LG tire inflation pressure values	NOSE LG 1.7bar/24psi	Nose LG fork

17. INSTRUMENTS PANEL

GARMIN G950 IFDS - Instruments panel (typical layout)

Item	Description
1	GDU 1040 (PFD)
2	GMA 1347
3	Compass
4	A/P Programmer/Computer
5	GDU 1040 (MFD)
6	LH fuel quantity indicator
7	LH R.P.M.
8	Dual M.A.P. indicator
9	RH R.P.M.
10	RH fuel quantity indicator
11	LH CHT
12	RH CHT
13	LH Oil Temperature
14	RH Oil Temperature
15	LH oil pressure
16	RH oil pressure
17	RH breakers panel
18	RH ram air inlet
19	Instruments light switch
20	Strobe light switch
21	Navigation light switch
22	Taxi light switch
23	Landing light switch
24	Position flaps indicator
25	RH fuel pressure
26	LH fuel pressure
27	Flap switch
28	Standby Altimeter
29	Standby Attitude indicator
30	RH Cross bus switch

Item	Description
31	RH Field
32	LH Cross bus switch
33	Master switch
34	RH Avionic switch
35	LH Field
36	LH Avionic switch
37	Standby Airspeed indicator
38	Chronometer
39	LG control knob
40	Voltammeter Indicator
41	ADF control panel
42	Cockpit light dimmer
43	Cabin heat (warm air from RH engine)
44	Avionics lights dimmer
45	Cabin heat (warm air from LH engine)
46	LH ram air inlet
47	Trim rudder indicator
48	Switches built-in lights dimmer
49	ELT Indicator
50	RH breakers panel
51	Pitch trim indicator
52	Pitot heat switch
53	A/P Master switch
54	A/P trim master switch
55	Fire Detector push-to-test
56	LH/RH Ammeter selector switch

18. ELECTRICAL SYSTEM

Primary DC power is provided by two engine-driven generators which, during normal operations, operate in parallel.

Each generator is rated at 14,2-14,8 Vdc, 40 Amp, and it is fitted with an integrated regulator, which acts to maintain a constant output voltage, and with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by generator failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

Secondary DC power is provided by a battery (lead type - Gill Teledyne G35, 12 V, 38-Ah in 20h run time) and an external DC power source can be connected to the aircraft DC distribution system.

On the instruments panel, right side, it is installed a voltmeter/ammeter. The ammeter section can indicate the current supplied by either left or right generator switching a dedicated selector.

There are five different busses (make reference to Figure 11):

- Battery bus
- · LH Generator bus
- RH Generator bus
- LH Avionics bus
- RH Avionics bus

The distribution system operates as a single bus with power being supplied by the battery and both generators but it is possible to separate the left busses from the right busses when required by means of the Cross Bus switches.

All electrical loads are divided among the five busses on the basis of their importance and required power: equipment with duplicate functions is connected to separate busses.

The Battery bus, which supplies the most important loads, is energized from three sources: the battery and both generators. This allows the bus for remaining active also in case of two independent faults in the supply paths.

The following loads are connected to the battery bus:

Battery Bus
GMA 1347 Audio Panel
GIA #1
GDU PFD
Cooling Fan
Converter 1
Standby attitude indicator
LH and RH Fuel electrical pump
LH and RH Fuel pressure
LH and RH Fuel quantity
LH and RH Oil pressure
LH and RH Oil temperature
LH and RH CHT
LH and RH RPM indicator
Cabin lights
Cockpit lights
Switches built-in lights
Avionics lights
Strobe lights
Flaps
Doors pressure switches
Engine hour meter (2 units)
Turn coordinator (A/P slaved)
LG hydraulic pump
LG indicating & control system
LH and RH Fire detector
Chronometer
12V cabin electrical power sockets (2 units)

In addition, directly on the battery, the following devices are connected:

- Emergency back-up attitude indicator (RH attitude indicator usually supplied from RH generator bus), when installed;
- Emergency Light
- Chronometer

The first two devices are controlled by the pertinent switches located on the LH breakers rack.

The other loads are so divided among following busses:

LH GEN Bus	LH Avionic Bus
Pitot heat	DME
Landing light	Transponder
Taxi light	Encoder altimeter

RH GEN Bus	RH Avionic Bus
NAV lights	ADF
Rudder trim	COM 2
Stall warning	NAV 2
RH attitude indicator	A/P (*)
	A/P Pitch Trim (*)

(*) if installed

On the central pedestal (see Figure below) there are seven switches disposed on two rows: on the first row there is the MASTER SWITCH which allows for connecting, through the battery relay, the battery to the battery bus.

LH and RH FIELD switches control the pertinent generator: setting the switch to OFF puts the pertinent generator off-line.

In correspondence of the second row there are 4 switches LH/RH AVIONIC and LH/ RH CROSS BUS.

Central pedestal switches console

The first two allow, through a relay, for cutting off the power supply to the pertinent avionic bus.

The second ones allow, through a relay, for realizing the parallel connection between the pertinent generator bus and the battery bus. Setting these ones to OFF,

Garmin G950 IFDS - Supplement

P2006T - Aircraft Flight Manual Page S7 - 44

the pertinent generator bus (and related avionic bus supplied) is separated from the battery bus and from opposite generator bus.

When both generators are correctly operating and all above mentioned switches are in ON position, all the busses are connected to the generators.

The ignition switches, two for each engine and grouped on the over head panel, are instead independent from the airplane electrical system (generation and distribution); they only control and open the engine electrical circuit.

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

6 16 18 Oh #C Prict of 30 Hazarta ha 30 W. 30 Sente cross (Res) Os #1 PS05 pln 44 (Discrete in 84) **Electric system schematic** 0 13 Bresker (2) 20 (2) が一 187 W Bresker crossfeed 23 an Magneto Settch 23

4th Edit. Section 7 – Airframe and Systems description

4th Edition, Rev. 0

SECTION 8 - AIRCRAFT CARE and MAINTENANCE

INDEX

1. INT	troauction	3
2. Ins	spection intervals	3
3. Aiı	rcraft changes or repairs	3
4. Ma	aintenance	4
4.1.	Refuelling	4
4.2.	Oil level control	4
4.3.	Landing gear tires pressure control	5
5. Gr	ound towing, parking and mooring	6
5.1.	Towing	6
5.2.	Parking	6
5.3.	Mooring	7
6. Cle	eaning	8
6.1.	Windows	8
6.2.	External surfaces	8
6.1	Propeller	8
6.2	Engine	8
6.3	Internal surfaces	9
7. Ice	e removal	9

1. Introduction

This Section deals with main care and maintenance operations for *P2006T*.

Refer to Aircraft Maintenance Manual to establish the controls / inspections / maintenance tasks (scheduled and unscheduled) to be performed.

2. INSPECTION INTERVALS

Scheduled inspections must be performed in accordance with the instructions addressed on the Aircraft Maintenance Manual. Independently from the aircraft flight hours, an annual inspection has to be performed.

The first scheduled engine inspection must be carried out after first 3/6 hours. All required inspections are reported in the Aircraft Maintenance Manual.

As far as the scheduled/unscheduled engine maintenance is concerned, refer to the engine manufacturer Maintenance Manual.

Unscheduled inspections/maintenance tasks are necessary when one or more of following conditions occur:

- 1. Emergency landing
- 2. Breaking / damage of propeller (or in case of simple impact)
- 3. Engine fire
- 4. Lights damage
- 5. Any type of damage or failure

3. AIRCRAFT CHANGES OR REPAIRS

Aircraft changes or repairs must be performed in accordance with Aircraft Maintenance Manual and only by TECNAM authorized personnel.

4. MAINTENANCE

4.1. REFUELLING

- Do not perform aircraft refuelling near flames, sparks or similar.
- Avoid fuel contact with the skin: a skin corrosion could occur.
- Make sure that a fire extinguisher is available nearby during refuelling operations.

- Make sure that overall aircraft instrumentation is turned OFF before performing the refuelling.
- Do not operate switches and/or pushbuttons inside the aircraft during refuelling operation; make sure that crew left the aircraft before performing refuelling.
- Make sure that the aircraft is electrically connected to the ground.

4.2. OIL LEVEL CONTROL

- 1. Open the inspection cap on the engine nacelle
- 2. Prior to oil check, switch off both ignitions circuits and turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank, or let the engine idle for 1 minute. This process is finished when air is returning back to the oil tank and can be noticed by a murmur from the open oil tank.
- 3. Clean the dipstick and soak it in the reservoir
- 4. Remove dipstick and read oil level
- 5. If required, replenish oil: oil level should be between max. and min. mark of the oil level dipstick
- 1. Close the inspection cap
- 2. Repeat the procedure for the other engine

4.3. **LANDING GEAR TIRES PRESSURE CONTROL**

- 1. Remove wheel dust cover (on main LG wheels)
- 2. Unscrew the tire cap
- 3. Connect a gauge
- 4. Read the pressure value
- 5. If required, rectify the pressure (nose tire 1.7 Bar / 24 Psi, main landing gear tires 2,3 Bar / 33 Psi)
- 6. Fit the tire cap
- 7. Install wheel dust cover (on main LG wheels)

5. GROUND TOWING, PARKING AND MOORING

5.1. Towing

When the a/c is moved on the ground, either manually or by towing, the Master Switch must be turned ON until the a/c is parked.

To tow the aircraft it is necessary to use a metal stiff bar connected to the nose gear.

Do not turn nose wheel above 20° either side of center: greater steering angles can damage the wheel stop. The tow bar must be removed before engines starting.

5.2. PARKING

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake
- 3. Install control locks
- 4. Secure pilot control wheel by wrapping the seat belt around it

Do not engage the parking brakes at low ambient temperature, when an accumulation of moisture may cause the brakes to freeze, or when they become hot from severe use. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para. 5.3.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

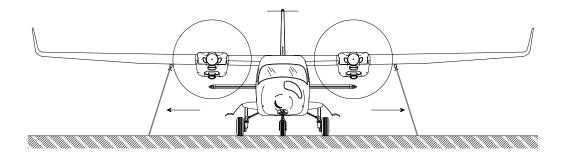
5.3. Mooring

The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

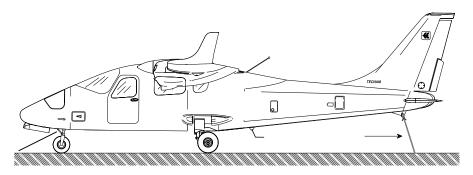
Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind, if practical
- 2. Center nose wheel and engage parking brake and/or use the wheel chocks



Do not engage the parking brakes at low ambient temperature, when an accumulation of moisture may cause the brakes to freeze, or when they become hot from severe use. In these cases use wheel chocks.

- 3. Secure pilot control wheel by wrapping the seat belt around it
- 4. Assure that flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks
- 7. Install protective plugs
- 8. Close and lock cabin doors.
- 9. Secure tie-down cables to the nose gear leg (in correspondence of the wheel fork) and to the wings and tail cone tie-down rings at approximately 45 degree with respect to the ground. (Refer to following figures)



Additional preparation for high winds includes tie-down ropes from the main landing gear forks employment.

Mooring - front view

Mooring - side view

6. **CLEANING**

Aircraft surface must be kept clean to ensure expected flight performance. Excessively dirty surfaces can affect normal flight conditions.

6.1. **WINDOWS**

For windows cleaning, it is allowed the use of acrylic products employed for glass and Plexiglas surfaces cleaning.

6.2. **EXTERNAL SURFACES**

Aircraft surface is cleaned with soapy water; they are not allowed solvents or alcohol based products. Died insects must be removed using hot water. It is advisable to avoid outside aircraft parking for long periods; it is always con-

venient to keep the aircraft in the hangar.

6.1 **PROPELLER**

To preserve its functionality avoiding wear and corrosion, the propeller manufacturer uses, for external surface painting, an acrylic paint which is resistant to all solvents. In any case it is advisable to clean the propeller using exclusively soapy water.

6.2 **ENGINE**

Engine cleaning is part of the scheduled maintenance. Refer to the engine manufacturer Maintenance Manual for operating and for planning its cleaning.

6.3 INTERNAL SURFACES

Interiors must be cleaned with a rate of 3 to 6 months. Any object present in the cabin (like pens, lost property, maps etc) must be removed.

The instrumentation as a whole must be cleaned with a humid cloth; plastic surfaces can be cleaned with suitable products.

For parts not easily accessible, perform cleaning with a small brush; seats must be cleaned with a humid cloth.

7. ICE REMOVAL

Anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

SECTION 9 - SUPPLEMENTS

INDEX

1.	Introduction
2.	Supplements lists
	SUPPLEMENTS LIST FOR AIRPLANES WITH ANALOGUE INSTRUMENTS
Sup	oplement no. A1 - Garmin GNS-430W GPS/WAAS COMM/NAV
Sup	pplement no. A2 - Garmin SL30 VHF COMM/NAV
Sup	pplement no. A3 - Garmin GMA340 audio panel
Sup	pplement no. A4 - Garmin GTX328 Mode S transponder
Sup	pplement no. A5 – KR 87 ADF System
Sup	pplement no. A6 – KN 63 DME System
Sup	pplement no. A7 – KCS 55A Compass System
Sup	pplement no. A8 - Garmin GNS-530W GPS/WAAS COMM/NAV
Sup	pplement no. A9 - Garmin GTX330 Mode S transponder
Sup	pplement no. A10 - Garmin GMA347 audio panel
Sup	pplement no. A11 – Becker BXP 6401-2-(01) Mode S transponder
Sup	pplement no. A12 – S-TEC Fifty Five X Autopilot
Sup	pplement no. A13B – GTN 650 equipment
Sup	pplement no. A14 – Engine starting battery
Sup	pplement no. A15 – Power supply from built-in generators
Sup	pplement no. A16 – AFM supplement for CIS operators
Sup	pplement no. A17 – Brazilian AFMS
Sup	pplement no. A18 – Chinese AFMS
Sup	pplement no. A19 – Increased MTOW - 1230 KG (MOD 2006/015)
Sup	pplement no. A20 – Increased Vie/Vio
Sup	pplement no. A21 – South African AFM
Sup	pplement no. A22 – Argentine AFM
Sup	pplement no. A23 – Ukrainian AFM
Sup	pplement no. A24 – SMP for Analogic Configuration
Sup	pplement no. A25 – Alternators with 70A
Sup	pplement no. A26 – India AFMS
Sup	pplement no. A27 – Oil Temp. indicator update

SUPPLEMENTS LIST FOR AIRPLANES WITH GARMIN G950 IFDS

Supplement no. G1 - Garmin G950 IFDS

Supplement no. G2 - S-TEC Fifty Five X Autopilot for GARMIN G950

Supplement no. G3 - KR 87 ADF System for GARMIN G950

Supplement no. G4 - KN 63 DME System for GARMIN G950

Supplement no. G5 - Engine starting battery

Supplement no. G6 - Power supply from built-in generators

Supplement no. G7 – AFM supplement for CIS operators

Supplement no. G8 - Brazilian AFMS

Supplement no. G9 - Chinese AFMS

Supplement no. G10 - Increased MTOW - 1230 KG (MOD 2006/015)

Supplement no. G11 - Increased Vie/Vio

Supplement no. G12 - South African AFM

Supplement no. G13 - Alternators with 70A

Supplement no. G14 – SMP for Digital Configuration

Supplement no. G15 - RESERVED

Supplement no. G16 - MD302 Alternative Stand-By Instrument

Supplement no. G17 - Stormscope

Supplement no. G18 - Oil Temp. indicator update

1. Introduction

This Section concerns the supplemental manuals of additional (or optional) instrumentation equipping the P2006T.

Two lists are reported: the first one applies to airplanes with analogue instruments, the second one applies to airplanes embodying the Design Change MOD2006/002 "Garmin G950".

2. SUPPLEMENTS LISTS

Aircraft S/N	ircraft S/N: Registration marks:			Date:	
SUPPL	EMENTS LIST FOR AIRI	PLANES V	WITH ANA	ALOGUE INST	FRUMENTS
a		_		APPLIC	CABLE:
Sup. No.	Title	Rev. no.	Date	YES	NO
A1	Garmin GNS-430W Gps/VHF Comm/Nav				
A2	Garmin SL30 VHF Comm/Nav				
A3	Garmin GMA 340 Audio Panel				
A4	Garmin GTX 328 Mode S Transponder				
A5	Bendix-King Honeywell KR 87 ADF System				
A6	Bendix-King Honeywell KN 63 DME System				
A7	KCS 55A Compass System				
A8	Garmin GNS-530W Gps/VHF Comm/Nav				
A9	Garmin GTX 330 Mode S Transponder				
A10	Garmin GMA 347 Audio Panel				
A11	Becker BXP 6401-2-(01) Mode S transponder				
A12	S-TEC Fifty Five X Autopilot				
A13B	GTN 650 equipment				
A14	Engine starting battery				
A15	Power supply from built- in generators				
A16	AFM Supplement for CIS countries operators				
A17	Brazilian AFMS				

Aircraft S/N: Registration marks:			Date:		
SUPPL	EMENTS LIST FOR AIRI	PLANES	WITH AN	ALOGUE INS	TRUMENTS
Carr No	771.1		Data	APPLI	CABLE:
Sup. No.	Title	Rev. no.	Date	YES	NO
A18	Chinese AFMS				
A19	Increased MTOW - 1230 KG (MOD 2006/015)				
A20	Increased Vle/Vlo				
A21	South African AFM				
A22	Argentine AFM				
A23	Ukrainian AFM				
A24	SMP for Analogic Configuration				
A25	Alternators with 70A				
A26	India AFMS				
A27	Oil Temp. indicator update				

INTENTIONALLY LEFT BLANK

Aircraft S/	Aircraft S/N: Registration marks: Date:				
SU	JPPLEMENTS LIST FOR	AIRPLAN	NES WITH	GARMIN G9	50 IFDS
Cum No	Title	Day no	Data	APPLI	CABLE:
Sup. No.	Title	Rev. no.	Date	YES	NO
G1	Garmin G950 IFDS				
G2	S-TEC Fifty Five X Autopilot for GARMIN G950				
G3	Bendix-King Honeywell KR 87 ADF System for GARMIN G950				
G4	Bendix-King Honeywell KN 63 DME System for GARMIN G950				
G5	Engine starting battery				
G6	Power supply from built- in generators				
G7	AFM Supplement for CIS countries operators				
G8	Brazilian AFMS				
G9	Chinese AFMS				
G10	Increased MTOW - 1230 KG (MOD 2006/015)				
G11	Increased Vle/Vlo				
G12	South African AFM				
G13	Alternators with 70A				
G14	SMP for Digital Configuration				
G15	- Reserved -				
G16	MD302 Alternative Stand-By Instrument				
G17	Stormscope				
G18	Oil Temp. indicator up-				

INTENTIONALLY LEFT BLANK

SUPPLEMENT NO. A22 - ARGENTINE AFM

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
Kev	page	Revision	DO	OoA	HDO	Privileges
0		First issue	D. Ronca	G.Paduano	M. Oliva	See Note (*)

Note (*): this Supplement has been originally issued on 5th May 2014, after EASA Third Country Validation process completion.

LOEP

Page	Revision	Page	Revision
A22-1	Rev 0	A22-10	Rev 0
A22-2	Rev 0	A22-11	Rev 0
A22-3	Rev 0	A22-12	Rev 0
A22-4	Rev 0		
A22-5	Rev 0		
A22-6	Rev 0		
A22-7	Rev 0		
A22-8	Rev 0		
A22-9	Rev 0		

TABLE OF CONTENTS

INT	RODUCTION	4
Gen	neral	5
	Fuel	
Lim	itations	. 5
1.	Kind of Operation Equipment	5
2	Other Placards	G

INTRODUCTION

This Supplement applies for Argentine registered aircraft.

It contains supplemental information to the basic information approved in EASA aircraft Flight Manual when the aircraft is registered in Argentine.

For Limitations, procedures, and performance information not contained in this supplement, refer to the basic Aircraft Flight Manual.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual, as applicable.

GENERAL

1. FUEL

MOGAS ASTM D4814 Approved fuel:

AVGAS 100LL (ASTM D910)

LIMITATIONS

1. KIND OF OPERATION EQUIPMENT

The equipment appropriate for different types of operations must comply with applicable regulations.

2. OTHER PLACARDS

Description	Placard	Place	Dimensions (mm)
ELT equipment location	ELT AQUÍ	Baggage compartment, right side	50x45
First Aid Kit location	EQUIPO DE PRIMEROS AUXILIOS	Baggage compartment, aft cover panel	40x40
Fire extin- guisher loca- tion	EXTINTOR	Cockpit floor, pilot side	35x50
Emergency gear extension compartment location	TIRAR PARA ABRIR EXTENSION DE EMERGENCIA DEL TREN DE ATERRIZAJE 93 KIAS	Removable cap	55x28
Emergency gear extension compartment location (only if MOD2006/33 or SB 098 CS is installed)	TIRAR PARA ABRIR EXTENSION DE EMERGENCIA DEL TREN DE ATERRIZAJE 122 KIAS	Removable cap	55x28

Description	Placard	Place	Dimensions (mm)
Emergency gear extension instructions	OPERACIONES DE EMERGENCIA PRIMERO DESCARGAR ON LUEGO EMERGENCIA	Emergency distributors compartment	55x28
Smoking ban	NO SMOKING NO FUMAR	Instruments panel, right side	21x3
ESB voltmeter (see suppl. A14)	BATERIA ARRANQUE DE MOTOR VOLTIMETRO	Instruments panel, right side	56x9
Battery housing	ABRIR AQUÌ 1/4 DE GIRO BATERIA ADENTRO	On the battery housing, left side, aircraft tail cone	65x40
Engine oil level and specifications	TANQUE DE ACEITE verificar nivel OK MIN 2 Lt NO VOLAR CON NIVELES DE ACEITE FUERA DE LIMITES USAR SOLAMENTE CON API CLASIFICACION SG O SUPERIOR	On the engine nacelle, in correspondence of the engine oil reservoir access door	50x50

Description	Placard	Place	Dimensions (mm)
Fuel type and quantity	MOGAS ASTM D4814 AVGAS 100LL (ASTM D910) 100 LITROS (26.4 U.S. GALS.) CAPACIDAD TOTAL	In correspondence of each fuel tank filler cap.	70x50
Ground connection during refuelling procedure	ANTES DE CARGAR COMBUSTIBLE CONECTAR LA AERONAVE A TOMA ELECTRICA A TIERRA	In correspondance of each tank filler cap	85x20
Baggage compartment capacity	CARGA MAXIMA DE EQUIPAJE 80kg/176lb MAXIMA PRESION ESPECIFICA 0.9 kg/dm² - 19 lbs/sqft ASEGURAR EL EQUIPAJE CON LA RED ANTES DEL VUELO	Baggage compartment (vertical panel)	90x55
Ditching emergency exit: opening instructions	EMERGENCIA AMERIZAJE FORZOZO SALIDA 1. GIRAR 2. EMPUJAR LA PUERTA FIRMEMENTE	Ditching emergency exit handle: internal side	77x46 - Ø200
Ditching emergency exit: opening instructions	EMERGENCIA AMERIZAJE FORZOZO SALIDA 1. GIRAR 2. TIRAR DE LA PUERTA FIRMEMENTE	Ditching emergency exit handle: external side	77x46 - Ø200

Description	Placard	Place	Dimensions
Door locking system: by- pass instruc- tions	PARA ACCESO DE EMERGENCIA 1. EMPUJAR Y MANTENER ABAJO LA PESTAÑA ROJA 2. ABRIR LA PUERTA CON LA MANIJA POR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emergency ex- it: internal side	(mm) 55x30 each
Door locking system: by- pass instruc- tions	PARA ACCESO DE EMERGENCIA 1. EMPUJAR Y MANTENER ABAJO LA PESTAÑA ROJA 2. ABRIR LA PUERTA CON LA MANIJA POR EMERGENCY ACCESS 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emergency ex- it: external side	55x30 each
Main door: exit instructions	PRIOR TO OPENING CABIN DOOR, MAKE SURE THE PROPELLER BLADES ARE FULLY STOPPED. OPEN CABIN DOOR AND ALLOW PASSENGERS TO DEPART THE AIRCRAFT ALONGSIDE THE DOOR. ADVERTENCIA Verificar que las helices esten detenidas antes de abrir la puerta Salida hacia el frente de la aeronave	Main door, internal side	67x20
Emergency exit label	EMERGENCY EXIT SALIDA DE EMERGENCIA	Emergency exit: internal and external side	200x20
Towing maximum turning angle	PRECAUCION angulo maximo de giro de remolque: 20° desde el centro hacia ambos lados	Nose landing gear front door	88x52
Seat position advisory	LOS ASIENTOS TRASEROS DEBEN ESTAR EN LA POSICION MAS BAJA Y COMPLETAMENTE HACIA ATRÁS DURANTE CARRETEO, DESPEGUE, ATERRIZAJE Y ATERRIZAJE DE EMERGENCIA	Behind pilot and co-pilot seats	85x18

Description	Placard	Place	Dimensions (mm)
Coolant tank content	REFRIGERANTE	On the coolant tank	17x19
Main gear tires inflating pressure	PRESION DE INFLADO RUEDAS TREN PRINCIPAL 2.3bar/33psi	Near each main gear wheel	47x20
Nose gear tires inflating pressure	PRESION DE INFLADO RUEDAS TREN DE NARIZ 1.7bar/24psi	Near the nose wheel	47x20
External power socket	CONEXIÓN ENERGIA EXTERNA (MASTER OFF) 12 VCC	Below the external power socket, aircraft tail cone, left side	50x48
Emergency tank max pres- sure indicating	PRESION TANQUE LIQUIDO HIDRAULICO DE EMERGENCIA LIMITE DE BAJA PRESION 20 BAR / 290 P.S.I.	On the emergency tank inspection door, left side, aircraft tail cone	150x15
Static port	TOMA ESTATICA MANTENER LIMPIA	On each static port, left and right side of aircraft tail cone	40x12

Description	Placard	Place	Dimensions (mm)
LG hydraulic compartment location	TREN DE ATERRIZAJE COMPARTIMIENTO HIDRAULICO	Fuselage tail, left side, in correspondence of LG hydrau- lic compart- ment cap	80x20

INTENTIONALLY LEFT BLANK

Supplement no. A23 Ukrainian Aircraft Flight Manual Supplement

Record of Revisions

Rev	Revised	Description of	Tec	nam Appr	EASA Approval or Under DOA	
	page	Revision	DO	OoA	HDO	Privileges
0	1	See Note (*)	D. Ronca	M. Oliva	M. Oliva	DOA

Note (*): this Supplement has been originally issued on 12 January 2015, after EASA Third Country Validation process completion.

List of Effective Pages

Page	Revision	Page	Revision
A23-1	Rev 0		
A23-2	Rev 0		
A23-3	Rev 0		
A23-4	Rev 0		
A23-5	Rev 0		
A23-6	Rev 0		
A23-7	Rev 0		
A23-8	Rev 0		
A23-9	Rev 0		
A23-10	Rev 0		
A23-11	Rev 0		
A23-12	Rev 0		

TABLE OF CONTENTS

INTRODUCTION	3
GENERAL	
FUEL	
LIMITATIONS	
Flight Altitude	
Types of surface	4
Restriction flight area without HF COMM	4
Other placards	4
Kinds of Operations Equipment List	
EMERGENCY PROCEDURES	6
Smoke and fire occurrence	
NORMAL OPERATIONS	7
PERFORMANCES	ε
Landing performances	
WEIGHT AND BALANCE	10

INTRODUCTION

This supplement must be placed in EASA Approved P2006T Aircraft Flight Manual Section 9, if the airplane is delivered in Ukraine.

This supplement must be applied to both P2006T digital and analogue configuration.

For limitations, procedures, and performance information not contained in this supplement, refer to the EASA Approved Aircraft Flight Manual.

GENERAL

The information contained herein complements or supersedes the basic information in the EASA Approved Aircraft Flight Manual.

FUEL

APPROVED FUEL

- MOGAS ASTM D4814
- MOGAS EN 228 Super/Super plus (min. RON 95)
- AVGAS 100 LL (ASTM D910)
- MOGAS DSTU 4839-2007

LIMITATIONS

FLIGHT ALTITUDE

"For flight at altitudes above 3600 m (11811 ft) the crew must use oxygen equipment.

Flights between 3000m (9842 ft) and 3600 (11811) altitude without oxygen equipment for the crew are limited to a maximum of 30 minutes.

For airplane operation above 3000 m (9842 ft) for more than 30 minutes, Oxygen supply must be provided for at least one passenger."

TYPES OF SURFACE

Take-off and landing operations must be conducted on dry or wet paved surfaces, dry or grass surfaces with a maximum grass height of 10 centimeters, or unpaved runways with a soil strength greater than or equal to 6 kg per sq. centimeter $(\sigma \ge 6kg/cm^2)$.

RESTRICTION FLIGHT AREA WITHOUT HF COMM

The flights of the airplane that are not equipped with HF communication system in areas without VHF communication capabilities are prohibited.

OTHER PLACARDS

Description	Placard	Place	
Fuel type and quantity	MOGAS ASTM D4814-EN 228 SUPER/SUPER PLUS (min. RON 95) DSTU 4839-2007 AVGAS 100LL (ASTM D910) 50 LITERS (13.2 U.S. GALS.) TOTAL USABLE CAPACITY	In correspondence of each fuel tank filler cap.	

KINDS OF OPERATIONS EQUIPMENT LIST

Equipment	VFR Day	VFR Night	IFR Day	IFR Night
Magnetic compass	•	•	•	•
Airspeed indicator	•	•	•	•
Altimeter	•	•	•	•
Vertical speed indicator	•	•	•	•
Attitude indicator (electric)	•	•	•	•
Turn coordinator	•	•	•	•
OAT indicator	•	•	•	•
Pitot heating system	•	•	•	•
Directional Gyro (electric)	•	•	•	•
Clock	•	•	•	•
Breakers panels	•	•	•	•
First Aid kit	•	•	•	•
Fire extinguisher	•	•	•	•
Fire detectors (2)	•	•	•	•
Instruments lights	•	•	•	•
Position lights	•	•	•	•
Landing light	•	•	•	•
Taxi light	•	•	•	•
Strobe lights	•	•	•	•
Torch	•	•	•	•
Cabin light		•	•	•
Cockpit lights		•	•	•
Emergency light	•	•	•	•
Volt-Ammeter				-
	•	•	•	•
COMM/NAV/GPS equipment	•	•	•	•
VOR/LOC/GS/GPS CDI	•	•	•	•
LG position and transition lights	•	•	•	•
Transponder	•	•	•	•
Audio Panel/Marker beacon	•	•	•	•
Altitude encoder	•	•	•	•
ELT	•	•	•	•
Alternate static source	•	•	•	•
MAP indicator (dual)	•	•	•	•
RPM indicator (2)	•	•	•	•
Oil pressure indicator (2)	•	•	•	•
Oil temperature indicator (2)	•	•	•	•
CHT (2)	•	•	•	•
Fuel pressure indicator (2)	•	•	•	•
Fuel quantity indicator (2)	•	•	•	•
Longitudinal trim indicator	•	•	•	•
Rudder trim indicator	•	•	•	•
Flaps position indicator	•	•	•	•
Stall warning system	•	•	•	•
Annunciator panel	•	•	•	•
2 nd VHF COMM/NAV equipment		•	•	•
2 nd VOR/LOC/GS CDI			•	•
DME			•	•
ADF	•	•	•	•
2 nd Airspeed indicator			•	•
2 nd Attitude indicator (electric)			•	•
2 nd Altimeter			•	•
	VFR Day	VFR Night	IFR Day	IFR Night

EMERGENCY PROCEDURES

SMOKE AND FIRE OCCURRENCE

Use ventilation window in case of smoke in cabin for all cases.

NORMAL OPERATIONS

Make reference to Section 4 of this Manual.

PERFORMANCES

LANDING PERFORMANCES

Weight = 1180 kg

Flaps: LAND

Short Final Approach Speed = 70 KIAS Throttle Levers: Idle

Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt)

Tailwind: + 11m for each kt (36ft/kt)

Paved Runway: - 2% to Ground Roll

Runway slope: -2.5% to Ground Roll for each +1% For dry and precipitation-covered runway: +67% to ground roll for destination airport +43% to ground roll for alternate airport

For wet runway:

+92% to ground roll for destination airport +64% to ground roll for alternate airport

Pressure		Distance [m]				
Altitude		Temperature [°C]				
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	183	202	220	238	213
3.L.	At 50 ft AGL	288	312	335	358	326
1000	Ground Roll	190	209	228	247	219
1000	At 50 ft AGL	297	321	345	369	334
2000	Ground Roll	197	217	237	256	226
2000	At 50 ft AGL	306	331	356	381	342
3000	Ground Roll	204	225	245	266	232
3000	At 50 ft AGL	325	352	379	405	360
4000	Ground Roll	212	233	255	276	239
4000	At 50 ft AGL	325	352	379	405	360
5000	Ground Roll	220	242	264	287	247
3000	At 50 ft AGL	335	363	391	418	369
6000	Ground Roll	228	251	275	298	254
0000	At 50 ft AGL	346	375	403	431	378
7000	Ground Roll	237	261	285	309	262
7000	At 50 ft AGL	357	387	416	445	388
8000	Ground Roll	246	271	296	321	270
8000	At 50 ft AGL	368	399	430	460	398
9000	Ground Roll	256	282	308	334	279
3000	At 50 ft AGL	380	412	444	475	409
10000	Ground Roll	266	293	320	347	288
10000	At 50 ft AGL	393	426	459	491	420

INTENTIONALLY LEFT BLANK

WEIGHT AND BALANCE

For weight and balance, make reference to Section 6 of this Manual.

INTENTIONALLY LEFT BLAN

SUPPLEMENT NO. G2 - S-TEC FIFTY FIVE X AUTOPILOT FOR **GARMIN G950**

Record of Revisions

Rev	Revised	nogo Devision	am Appr	oval	EASA Approval or Under DOA	
	page		DO	OoA	HDO	Privileges
0	-	See Note (*)				
1	G2-9	Add Warning	M. Landi	M. Oliva	L. Pascale	DOA privileges

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10029331 (dated 18 March 2010)

List of Effective Pages

Page	Revision	Page	Revision
G2-1	Rev 1	G2-6	Rev 0
G2-2	Rev 0	G2-7	Rev 0
G2-3	Rev 0	G2-8	Rev 0
G2-4	Rev 0	G2-9	Rev 1
G2-5	Rev 0	G2-10	Rev 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with S-TEC Fifty Five X autopilot device interfacing Garmin G950 IFDS.

GENERAL

The System Fifty Five X is a rate based autopilot. When in control of the roll axis, the autopilot senses turn rate, as well as closure rate to the selected course, along with the non-rate quantities of heading error, course error and course deviation indication.

When in control of the pitch axis, the autopilot senses vertical speed, acceleration, and closure rate to the selected glideslope, along with the non-rate quantities of altitude and glideslope deviation indication.

These sensed data provide feedback to the autopilot, which processes them in order to control the aircraft through the use of mechanisms coupled to the control system.

The "autotrim" function senses when the aircraft needs to be trimmed about the pitch axis, and responds by driving the trim servo in the proper direction to provide trim.

LIMITATIONS (EASA APPROVED)

The S-TEC "Pilot's Operating Handbook Fifty Five X" (4th Edition – First Revision dated March 01, 2008 or a more updated version) must be carried in the aircraft and made available to the pilot at all time.

In accordance with FAA recommendation (AC 00-24B), use of basic "Altitude Hold" mode is not recommended during operation in severe turbulence.

Following operating limitations shall apply when the aircraft is equipped with S-TEC Fifty Five X autopilot:

- The Autopilot is certified for Category I ILS Approaches [with a decision height not lower than 200 feet AGL (61m)]
- Autopilot operation forbidden with flaps extended more than TO position
- During Autopilot operation, a pilot with seat belt fastened must be seated at the left pilot position
- The use of Autopilot during single engine operation is forbidden
- Autopilot DISC during take-off and landing
- Maximum speed for Autopilot operation is 135 KIAS
- Minimum speed for Autopilot operation is 85 KIAS
- Minimum altitude AGL for Autopilot operation is:
 - a. Cruise and Descent: 1000 ft
 - b. Climb after takeoff and not precision approach: 400 ft
 - c. ILS CAT I precision approach: 200 ft

On the instrument panel, in clear view of the pilot, it is placed the following placard reminding the observance of aircraft operating limitations during Autopilot operation:

OPERATING LIMITATIONS FOR AUTOPILOT S-TEC 55X

- Category I ILS Approaches only (200 ft AGL)
- · Do not use AP during take-off and landing
- Do not use AP with flaps extended more than TO position AP operanting speeds range: 85 to 135 KIAS
- · Pilot with seat belt fastened must be seated at the left pilot position during AP operation
- · Min. altitude AGL for Autopilot operation is: Cruise and Descent: 1000 ft
- · Do not use AP during single engine operation
- Climb after takeoff and not precision approach: 400 ft

EMERGENCY PROCEDURES

In event of autopilot malfunction, or when the system is not performing as expected or commanded, take immediately the aircraft control disconnecting the autopilot which must be set inoperative until the failure has been identified and corrected.

Altitude lost during a pitch axis autopilot malfunction and recovery

Following table addresses the altitude lost during a pitch axis malfunction and recovery for each reported flight phase:

Flight phase	Altitude loss
Climb	200 ft
Cruise	150 ft
Descent	200 ft
Maneuvering	50 ft
Approach	80 ft

Autopilot hardover or failure to hold the selected heading

In case of Autopilot hardover or failure to hold the selected heading, apply following procedure:

Accomplish items 1 and 2 simultaneously:

1. Airplane control wheel	GRASP FIRMLY and OVERPOWER
	if necessary to regain aircraft control

2.	AP DISC/TRIM INTR switch	PRESS
3.	AP MASTER SWITCH	OFF
4.	AP Circuit Breaker	PULL

When Autopilot is disconnected as a consequence of a malfunction, hold the control wheel firmly: it may be necessary up to 35 pounds (15.8 daN) of force on the control wheel to hold the airplane level.

When Autopilot is disconnected, it may be necessary operate the pitch trim through either the Manual Electric Trim Switch or the Trim Wheel.

Electric trim malfunction

In case of Electric Trim malfunction (either in AP Autotrim mode or when manually operated through the Manual Electric Trim Switch), apply following procedure:

1. AP DISC/TRIM INTR switch PRESS and HOLD

2. TRIM MASTER SWITCH OFF

3. TRIM Circuit Breaker *PULL*

4. AP DISC/TRIM INTR switch RELEASE

When Autopilot is disconnected because of a pitch trim malfunction, hold the control wheel firmly: it could be necessary up to 35 pounds (15.8 daN) of force on the control wheel to hold the airplane level.

When electric trim is disconnected, it may be necessary operate the pitch trim through the Trim Wheel.

When electric trim is disconnected, Autopilot system can be operated both in pitch and roll modes; nevertheless, when a pitch mode (ALT HOLD, VS, GS) is engaged, the Autopilot will provide an annunciation whenever it is necessary to manually trim the aircraft about the pitch axis using the Trim Wheel. Make reference to S-TEC "Pilot's Operating Handbook Fifty Five X" (4th Edition – First Revision dated March 01, 2008 or a more updated version).

Heading information signal lost

When AP is engaged and the heading information is lost (red X on display field – make also reference to Supplement G1 – Emergency procedures), the AP must be disconnected applying following procedure:

Accomplish items 1 and 2 simultaneously:

1. Airplane control wheel GRASP FIRMLY and OVERPOWER if

necessary to regain aircraft control

2. AP DISC/TRIM INTR switch PRESS

3. AP MASTER SWITCH OFF

4. AP Circuit Breaker *PULL*

5. Refer to other navigation means for heading information

When Autopilot is disconnected as a consequence of a malfunction, hold the control wheel firmly: it may be necessary up to 35 pounds (15.8 daN) of force on the control wheel to hold the airplane level.

When Autopilot is disconnected, it may be necessary operate the pitch trim through either the Manual Electric Trim Switch or the Trim Wheel.

NORMAL OPERATIONS

Normal operating procedures, including pre-flight checks, are described on S-TEC "Pilot's Operating Handbook Fifty Five X" (4th Edition – First Revision dated March 01, 2008 or a more updated version).

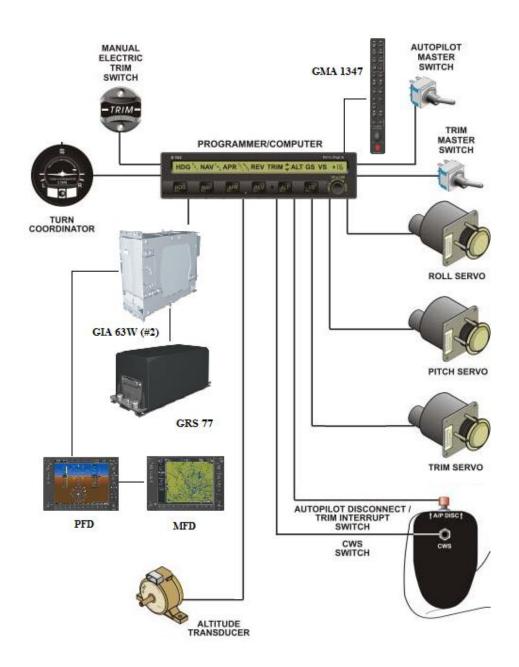
Status/mode annunciations and/or visual representations are simultaneously displayed on both the G950 (AFCS Status Box and/or PFD) and the S-TEC Fifty Five X Autopilot Display.

Make reference to Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00) – last issue.

The vertical speed mode is used to establish and hold a PILOT selected vertical speed. Since the autopilot receives no airspeed information, it is the responsibility of the pilot to ensure that the vertical speed selection is within the operating limits of the aircraft's capabilities. Selection of a vertical speed beyond the capability of the aircraft can create a condition of reduced airspeed, and possibly lead to a stall condition.

PERFORMANCES

S-TEC Fifty Five X Autopilot employment does not affect the aircraft performances.


WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

The System Fifty Five X Block Diagram is shown in the following figure.

SUPPLEMENT NO. G3 - KR 87 ADF SYSTEM FOR GARMIN G950

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
Kev	page	page Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10029633 (dated 8 April 2010)

List of Effective Pages

Page	Revision	Page	Revision
G3-1	Rev 0	G3-3	Rev 0
G3-2	Rev 0	G3-4	Rev 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with ADF KR 87 device in conjunction with Garmin G950 system.

GENERAL

KR 87 is an ADF for navigation with respect to the Non Directional Beacon stations.

LIMITATIONS

ADF KR 87 manuals do not address operating limitations more severe than those usually applicable to the P2006T.

EMERGENCY PROCEDURES

Particular meteorological conditions can distort the equipment indications. Therefore, to avoid false indications about NDB direction, it is necessary to select ANT function in order to query the selected station and to listen to its identification code.

Near electrical interferences (electrical storms), ADF indicator tends to head toward the interferences themselves. Take into account this likelihood when the indicator heads, for example, toward highly cloudy or stormy zones.

Wrong indications could arise also during night flights, near mountainous reliefs and as effect of the coastal refraction.

NORMAL OPERATIONS

Normal operating procedures are reported on the following documents:

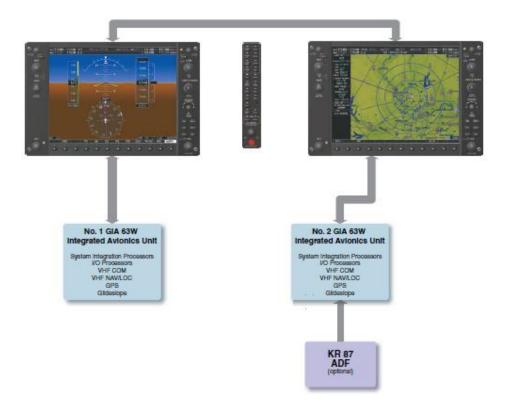
- 1) Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00) last issue.
- 2) ADF system "Pilot's guide and Reference", P/N KIKR87-PG-C last issue.

Bearing information is displayed on the Garmin G950 PFD, to the lower sides of the HSI: the PFD softkeys BRG1 and BRG2 cycles respectively Bearing 1 and Bearing 2 Information Window through the different bearing sources, including ADF/frequency.

Pressing the ADF Key on the GMA 1347 Audio Panel turns ADF receiver audio on or off on the headset/speaker.

PERFORMANCES

ADF KR-87 employment does not affect the aircraft performances.


WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

Refer to the guide "KR-87" P/N KIKR87-PG-C for a system description. The interface with Garmin G950 is shown on the following Figure.

SUPPLEMENT NO. G4 - KN 63 DME SYSTEM FOR GARMIN G950

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
Kev	page	Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10029633 (dated 8 April 2010)

List of Effective Pages

Page	Revision	Page	Revision
G4-1	Rev 0	G4-3	Rev 0
G4-2	Rev 0	G4-4	Rev 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with DME KN 63 device in conjunction with Garmin G950 system.

GENERAL

KN 63 is a DME equipment fitted with a remote module interfacing the Garmin G950 system. Indications are displayed above the PFD BRG1 Information Window.

LIMITATIONS

DME KN 63 manuals do not address operating limitations more severe than those usually applicable to the P2006T.

EMERGENCY PROCEDURES

In determined conditions, near the beacon, DME signal can be lost or distorted. Take into account this likelihood when a beacon approach is performed.

NORMAL OPERATIONS

Normal operating procedures are reported on Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00) – last issue.

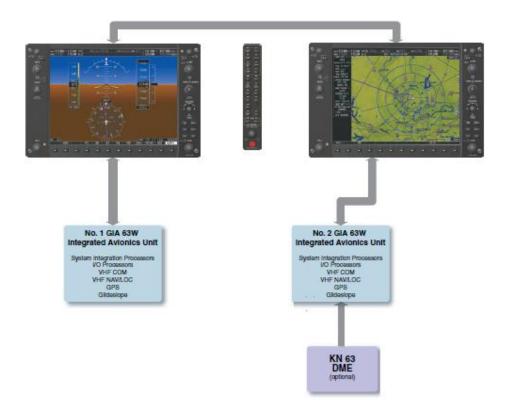
Make reference also to "KN 63 Installation Manual", P/N 006-00176 Rev. 4 dated October 2004.

The PFD softkey DME displays the DME Tuning Window, allowing tuning and selection of the DME.

The DME Information Window is displayed above the BRG1 Information Window and shows the DME label, tuning mode (NAV1, NAV2, or HOLD), frequency, and distance. When a signal is invalid, the distance is replaced by "-.- NM".

Pressing the DME Key on the GMA 1347 Audio Panel turns DME audio on or off on the headset/speaker.

PERFORMANCES


DME KN 63 employment does not affect the aircraft performances.

WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

Refer to the guide "KN 63 Installation Manual", P/N 006-00176 Rev. 4 dated October 2004 for a complete system description. The interface with Garmin G950 is shown on the following Figure.

INTENTIONALLY LEFT BLANK

SUPPLEMENT NO. G5 – ENGINE STARTING BATTERY

Record of Revisions

Rev	Revised	Description of	Tec	nam Appr	EASA Approval or Under DOA	
Kev	page	Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				
1	G5-2	amend emergency procedures	D. Ronca	G.Paduano	M.Oliva	DOA privileges

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10031750 (dated 9 September 2010)

List of Effective Pages

Page	Revision	Page	Revision
G5-1	Rev 0	G5-3	Rev 0
G5-2	Rev 0	G5-4	Rev 0

INTRODUCTION

This section contains information to operate the airplane equipped with a supplemental battery dedicated to engines starting.

GENERAL

The engine starting battery is housed in a dedicated box under the main battery box: both batteries are accessible through the inspection cap F10 on the left side of the tail cone.

LIMITATIONS

See Section 2 of this Manual.

EMERGENCY PROCEDURES

In event of the following failure conditions, addressed on Section 3 of this Manual and leading to fly without power generation system:

- Both generators failure (Para. 3.1)
- Both generators overvoltage (Para 3.3)
- Inflight engine restart (Para 8.2)

apply, at the end of related checklist, following procedure:

EMERG BATT switch

ON

push the Emergency battery switch to ON to avoid a power generation system failure.

NORMAL OPERATIONS

During Cockpit Inspections (see Para. 3.2 – Section 4 of this Manual), perform also following check:

Eng. Starting Battery Voltmeter

CHECK 12 to 14 Volt

PERFORMANCES

See Section 5 of this Manual.

WEIGHT AND BALANCE

For weight and balance, make reference to Section 6 of this Manual; additionally, the equipment list reported on Para. 5 is so integrated:

	EQUIPMENT LIST	AIRCRAFT S/N	DATE	:			
Ref.	DESCRIPTION	P/N	Inst	W EIGHT [<i>kg]</i>	ARM [M]		
	AVIONICS & MISCELLANEOUS						
A14-1	Engine Starting Battery (EnerSys SBS8)		X	2.7	3.7		

SYSTEMS

When airplane embodies the design change in subject, in addition to the main battery, a dedicated engine starting battery is introduced.

The entire primary loads stand connected to the main battery itself and the engine starting battery is recharged by the generators.

This modification is transparent to the crew because it does not change deeply the usual normal and emergency procedures.

Additionally, in event of the overall loss of power generation, the starting battery can be put in parallel with the main battery by means of the EMERG BATT switch activation.

In order to allow the charging status check of the battery, a voltmeter is provided. Pushing the button close to the voltmeter, crew can read the battery status.

Both batteries are accessible through the inspection cap F10 on the left side of the tail cone.

When the design change in subject is embodied, following placards are installed on the airplane:

Description	Placard	Place
Engine starting battery voltmeter location	Eng. Starting Battery Voltmeter	Close to the voltmeter
Batteries compartment location	OPEN HERE 1/4 TURN BATTERIES INSIDE	Fuselage tail cone, left side

SUPPLEMENT NO. G6 - POWER SUPPLY FROM BUILT-IN GENERATORS

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval or Under DOA
Kev	page	Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10031748, rev 1 (dated 17 November 2010)

List of Effective Pages

Page	Revision	Page	Revision
G6-1	Rev 0	G6-4	Rev 0
G6-2	Rev 0	G6-5	Rev 0
G6-3	Rev 0	G6-6	Rev 0

INTRODUCTION

This section contains information to operate the airplane equipped with built-in generators.

GENERAL

The Rotax engine built-in generators, one for each engine, feed two bus bars.

LIMITATIONS (EASA APPROVED)

Following limitations must apply when the built in generators are operative:

During Take-off, Climb, Landing and Single Engine operations:

LH and RH AUX FIELD switch

BOTH OFF

EMERGENCY PROCEDURES

In event of the following failure conditions (addressed on Section S3 of this Manual):

- Single Engine operations
- Single generator failure (Para. 3.2)
- Single generator overvoltage (Para 3.4)
- Both generators failure (Para. 3.1)
- Both generators overvoltage (Para 3.3)
- Engine securing (Para. 5)
- Electrical system overall failure (Para. 7.1)
- All smoke and fire occurrences (Para 10.1 to 10.5)

apply following procedure:

LH and RH AUX FIELD switch

BOTH OFF

NORMAL OPERATIONS

See Section 4 of this Manual.

PERFORMANCES

See Section 5 of this Manual.

WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

When the airplane embodies the design change in subject, the Rotax engine builtin generators are enabled in order to supply power to two bus bars.

Each built-in generator is activated by means of a switch (LH and RH AUX FIELD) located on the LH breakers rack where are located also the breakers related to the auxiliary power generation system.

LH breakers rack: built-in generators field switches and system related breakers (panel type 1)

When panel type 2 is installed (see picture below), each generator field is first excited selecting START on the toggle switch. Then, to allow power generation, toggle switch must be set to ON position.

LH breakers rack: built-in generators field switches and system related breakers (panel type 2)

For both panels, the light (switch built-in light for panel 1) indicates that the electrical power is generated.

INTENTIONALLY LEFT BLANK

SUPPLEMENT NO. G7

AFM SUPPLEMENT FOR CIS COUNTRIES OPERATORS

Record of Revisions

Rev	Revised	Description of Te		am Appr	oval	EASA Approval or Under DOA
Kev	page	Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				

Note (*): this Supplement has been originally issued on 12 November 2010, after EASA Third Country Validation process completion.

List of Effective Pages

Page	Revision	Page	Revision
G7-1	Rev 0	G7-13	Rev 0
G7-2	Rev 0	G7-14	Rev 0
G7-3	Rev 0	G7-15	Rev 0
G7-4	Rev 0	G7-16	Rev 0
G7-5	Rev 0	G7-17	Rev 0
G7-6	Rev 0	G7-18	Rev 0
G7-7	Rev 0	G7-19	Rev 0
G7-8	Rev 0	G7-20	Rev 0
G7-9	Rev 0	G7-21	Rev 0
G7-10	Rev 0	G7-22	Rev 0
G7-11	Rev 0	G7-23	Rev 0
G7-12	Rev 0	G7-24	Rev 0

TABLE OF CONTENTS

INTRODUCTION	_
GENERAL	3
LIMITATIONS (EASA APPROVED)	4
Approved maneuvers	
Ambient Temperature	
Flight Altitude	
Airfield elevation	
Operation from unpaved runways	
Over-water flights	
Flight crew	
Other placards	6
EMERGENCY PROCEDURES	8
Smoke and fire occurrence	8
Failure of Control System	8
Loss of Stabilator Control	8
Loss of Aileron Control	9
Loss of Rudder Control	9
One engine inoperative procedures	10
Characteristic airspeeds with one engine inoperative	10
Inflight engine restart	11
Landing emergencies	
Landing without engine power	12
Landing on the Airfield	12
NORMAL OPERATIONS	
Cold weather operations	
Airspeeds for normal operations	
Aircraft walk-around	
Cockpit inspections	
Takeoff and climb	
Cruise	
Balked landing	
PERFORMANCES	18
Takeoff performances	
climb performance (one engine inoperative)	20
WEIGHT AND BALANCE	
SYSTEMS	22
Instruments panel	

INTRODUCTION

This supplement applies for CIS countries operators.

GENERAL

This supplement must be placed in EASA Approved P2006T Aircraft Flight Manual Section 9, if the airplane is certified to the CIS configuration. The information contained herein complements the basic information in the EASA Approved Aircraft Flight Manual. For limitations, procedures, and performance information not contained in this supplement, refer to the EASA Approved Aircraft Flight Manual.

LIMITATIONS (EASA APPROVED)

APPROVED MANEUVERS

Non aerobatic operations include:

- Any manoeuvre pertaining to "normal" flight
- Stalls
- Lazy eights
- Turns in which the angle of bank is not more than 60°
- Chandelle

Acrobatic manoeuvres, including whip stalls, spins and turns with angle of bank of more than 60°, are not approved for such a category. In addition, stall with one engine inoperative is forbidden.

Limit load factor could be exceeded by moving flight controls to maximum deflection at a speed above $V_A=V_O$ (118 KIAS, Manoeuvring Speed).

AMBIENT TEMPERATURE

Ambient temperature: from -25°C to +40°C.

FLIGHT ALTITUDE

Flight Altitude limitation: 3000 m (9800ft) and 3600 m (11800ft) for max. 30 minutes.

AIRFIELD ELEVATION

Maximum airfield elevation (Pressure Altitude): less than 2400 m (8000ft).

OPERATION FROM UNPAVED RUNWAYS

Operation from unpaved runways is limited by soil strength of 6 kg per sq. centimeter $(\sigma \ge 6 \text{kg/cm}^2)$.

OVER-WATER FLIGHTS

Extended over-water flights are allowed within the limitations prescribed by CIS operational regulations.

FLIGHT CREW

1 pilot Minimum permitted:

Maximum people on board: 4 people (including pilot)

If right control wheel is not removed, right seat may be occupied by the crew member.

OTHER PLACARDS

Description	Placard	Place
Smoking ban	NO SMOKING НЕ КУРИТЬ	Instruments panel, right side
Ditching emergency exit: opening instructions	АВАРИЙНЫЙ ВЫХОД НА ВОДУ 1. Повернуть 2. Сильно толкнуть дверь	Ditching emergency exit handle: internal side
Ditching emergency exit: opening instructions	АВАРИЙНЫЙ ВЫХОД НА ВОДУ 1. Повернуть 2. Сильно толкнуть дверь	Ditching emergency exit handle: external side
Door locking system: by- pass instruc- tions	FOR EMERGENCY ACCESS 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE ДЛЯ АВАРИЙНОГО ДОСТУПА	Main door and emergency exit: external side
	1. Нажать вниз и удержать красный флажок 2. Открыть дверь	

Description	Placard	Place
Door locking system: by- pass instruc- tions	FOR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emergency exit: internal side
	ДЛЯ АВАРИЙНОГО ВЫХОДА 1. Нажать вниз и удержать красный флажок 2. Открыть дверь	
Main door: exit instructions	WARNING VERIFY PROPELLER STOPPED BEFORE OPENING DOOR EXIT TOWARDS FRONT OF AIRCRAFT	Main door, internal side
	ПРЕДУПРЕЖДЕНИЕ Перед открытием двери убедиться, что винт остановлен Выход в переднюю часть самолета	
Emergency exit label	EMERGENCY EXIT АВАРИЙНЫЙ ВЫХОД	Emergency exit: internal and external side

EMERGENCY PROCEDURES

SMOKE AND FIRE OCCURRENCE

Use ventilation window in case of smoke in cabin for all cases.

FAILURE OF CONTROL SYSTEM

LOSS OF STABILATOR CONTROL

In case of loss of pilot side stabilator control (disconnected or jammed), apply following procedure:

- 1. Continue the flight at the speed of 80 85 KIAS due to the aircraft weight in cruise configuration.
- 2. Bank angle: not more than 30° during turning.
- 3. Control the aircraft with mechanical trim and engine power setting.

The increase of thrust causes a nose up moment; the decrease of thrust causes a nose down moment. The control by trim operation is related to the trim position: trim UP for aircraft nose Up; trim DOWN for aircraft nose DOWN.

Perform approach and landing only in cruise configuration (Flap 0°).

It is necessary to move the landing gear in down position before starting the glide and to balance the aircraft with trim and thrust.

It is possible to correct the glide path by trim operation to minimize the thrust engines changes.

Only after touchdown it is possible to move the engine controls in idle position.

Land as soon as possible.

LOSS OF AILERON CONTROL

In case of loss of pilot side aileron control (disconnected or jammed), apply following procedure:

- 1. Continue flight at the speed of 80 85 KIAS due to the aircraft weight in cruise configuration.
- 2. Control the airplane bank angle by means of the rudder.
- 3. Bank angle: not more than 30° during turning.
- 4. Land as soon as practical.

Perform approach and landing only in cruise configuration (Flap 0°).

Perform approach and landing with crosswind trend type landing.

LOSS OF RUDDER CONTROL

In case of loss of pilot side rudder control (disconnected or jammed), apply following procedure.

- 1. Continue flight at the speed of 80 85 KIAS due to the aircraft weight in cruise configuration.
- 2. Control airplane bank angle by means of ailerons.
- 3. Bank angle: not more than 30° during turning.
- 4. Land as soon as practical.

Perform approach and landing only in cruise configuration (Flap 0°).

Perform approach and landing with crosswind trend type landing.

ONE ENGINE INOPERATIVE PROCEDURES

The ineffectiveness of one engine results in an asymmetric traction condition which tends to yaw and to bank the aircraft. In this condition it is essential to maintain the direction of flight compensating the lower traction through the operating engine and counteracting the yawing effects through the use of pedals and rudder trim. To improve the efficiency, it is preferred to bank the aircraft to the side of the operating engine by about 5°.

Depending upon the circumstances that may arise, apply the emergency procedure as below.

CHARACTERISTIC AIRSPEEDS WITH ONE ENGINE INOPERA-TIVE

In case of one engine inoperative condition, pilot shall take into account the airspeeds shown below:

Conditions	Speed (KIAS)
Minimum aircraft control speed with one engine inoperative and flaps set to T.O. (V_{MC})	62
Best rate-of-climb speed with flaps set to T.O. (V_Y)	70
Best rate-of-climb speed with one engine inoperative with flaps set to 0° (V_{YSE})	80 (1180kg) 78 (1080kg) 75 (980kg)

NOTE

Perform approach and landing only with flap set at 0°.

INFLIGHT ENGINE RESTART

6.

It is preferred to restart the engine at an altitude below 4000ft and at the suggested speed of 80 KIAS or more

Carburettor heat *ON* if required 1.

Electrical fuel pump ON2. 3. Fuel quantity indicator CHECK

Fuel Selector CHECK (Crossfeed if required) 4.

FIELD *OFF* 5. BOTH ON Ignition

Operating engine Throttle Lever IDLE (only if practical) 7.

Stopped engine Throttle Lever IDLE

FULL FORWARD Stopped engine Propeller Lever

10. Start push-button **PUSH**

11. Propeller Lever SET at desired rpm

12. FIELD ON

13. Engine throttle levers SET as required

NOTE

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

After starter engagement during in-flight engine restart, PFD indication may be temporarily lost. PFD Attitude recovery can last up to 3-4 minutes. During attitude recovery it is necessary to maintain level straight-line flight.

In case of unsuccessful engine restart:

- SECURE engine (see *engine securing procedure* on Para. 5)
- Land as soon as practical applying one engine inoperative landing procedure. See Para. 8.6

In case of successful engine restart:

Land as soon as practical

After engine restart, if practical, moderate propeller rpm to allow the temperatures for stabilizing in the green arcs.

3rd Edition, Rev. 0

LANDING EMERGENCIES

LANDING WITHOUT ENGINE POWER

Landing on the Airfield

Both engines failure condition requires both propellers feathered and aircraft attitude set to maximum efficiency until the selection of the field, on which to perform an emergency landing, is made.

1. Airspeed (VY+4kts) 84 KIAS (1180kg) 82 KIAS (1080kg) 79 KIAS (980kg)

2. Flaps Only 0° 3. Landing gear control lever DOWN

To shorten the landing gear extension time, evaluate the possibility to use the emergency extension control. In this way the time required to complete the extension is shorter by about 8 sec.

4. Select landing field (check for obstacles and wind)

5. Safety belts *FASTEN*

Before touch down

6.	Fuel Selector	BOTH OFF
7.	Electrical fuel pump	BOTH OFF
8.	Ignitions	$ALL \ OFF$
9.	MASTER SWITCHES	ALL OFF

Emergency Landing outside of airfield shall be performed with landing gear retracted and starting flaps extension in FULL configuration at 50 ft of altitude. To reach the maximum gliding distance at the optimal airspeed above mentioned, and to reduce the loss of altitude during a 180° turn, turn with 30° bank angle.

The distance covered in correspondence of the optimal speed V_Y is about 4000 meters by 1000ft of altitude.

The loss of altitude, when a 180° turn is performed with bank angle of 30°, is about 200ft in correspondence of V_Y .

NORMAL OPERATIONS

COLD WEATHER OPERATIONS

If the aircraft is operated in cold weather conditions (from -25°C till -5°C) it is necessary to perform following procedures:

- Heat the cabin to +25°C to avoid windshield frost in flight
- Heat the engines with external source to $+20^{\circ}$ C
- Check the pressure in hydraulic system, recharge if necessary

AIRSPEEDS FOR NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations.

	FLAPS	1180kg (2600lb)
Rotation Speed (in takeoff, V_R)	T/O	64 KIAS
Speed over a 15 meters obstacle (V _{obs}) Take Off	T/O	70 KIAS
Best Angle-of-Climb Speed (V_X)	0°	80 KIAS
Best Rate-of-Climb speed (V_Y)	0°	80 KIAS
Approach speed	T/O	90 KIAS
Speed over a 15 meters obstacle (V _{obs}) Landing	T/O	70 KIAS
Final Approach Speed	FULL	70 KIAS
Manoeuvring speed (V_A)	0°	118 KIAS
Never Exceed Speed (V_{NE})	0°	167 KIAS

For training purposes, keep speed above following reference data before setting one engine to *zero* thrust condition (i.e. propeller lever full forward and throttle lever set at 15 mmHg MAP):

Safe single engine speed with flaps T/O (V_{SSE})	70 KIAS
Safe single engine speed with flaps 0° (V_{SSE})	80 KIAS (1180kg) 78 KIAS (1080kg) 75 KIAS (980kg)

3rd Edition, Rev. 0

AIRCRAFT WALK-AROUND

In addition to the aircraft walk-around checklist reported on basic AFM, Section 4, perform following checks:

Left and right wing leading edge Check stall strip.

COCKPIT INSPECTIONS

25 Flight controls

27 Cabin heat

28 Flaps

26 Alternate static port

29 Pitch trim control

30 Rudder trim control

Make sure that passengers are familiar with the safety belts and emergency exits employment and that they do not smoke on board. Passengers boarding, paying attention to the propeller disc, is under the pilot's responsibility.

Clean the displays using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings. Cleaners containing ammonia will harm the anti-reflective coating.

AUI	<u>ION</u>	v G
1.	Parking brake	CHECK ENGAGED
2.		CHECK on board
3.	Weight and balance	CHECK if within the limits
	Flight controls	Remove seat belt used as lock
	PFD and MFD	CHECK clean and set altitude displaying
		in meters (see G950 Pilot's Guide)
6.	Seat	Adjust as required
7.	Seat belt	Fastened
8.	Passenger briefing	Completed
	Doors	CLOSED AND LOCKED
10	Landing gear control lever	CHECK DOWN
	Breakers	All ON
12	MASTER SWITCH	ON
13	Fuel quantity	CHECK
	RH fuel selector	RIGHT
15	LH fuel selector	LEFT
16	RH Electrical Fuel Pump	ON, check fuel pressure gauge correct operation.
17	RH Electrical Fuel pump	OFF, check pressure decreased at zero
	LH Electrical Fuel Pump	ON, check fuel pressure gauge correct operation.
10	LH Electrical Fuel pump	OFF, check pressure decreased at zero
	Strobe light	ON
	Landing gear lights	TEST
	ELT	CHECK set to ARM
	Fire detector	TEST
	Engine levers friction	Adjust if required
	21101111 10 (015 111011011	

CHECK free CHECK closed

Operate control to FULL position, veri-

fying extension. Then retract flaps.

Set to neutral position.

Set to neutral position.

CLOSED

3rd Edition. Rev. 0

TAKEOFF AND CLIMB

1	Call TWR for takeoff	
2	Check for clear final and wind on run-	Direction and intensity
	way	
3	LH and RH Electrical Fuel pump	BOTH ON
5	Carburettors heat	CHECK OFF
8	LH and RH Propeller Lever	FULL FORWARD
9	LH and RH Throttle Lever	FULL THROTTLE (about 2400 ± 100 propeller rpm)
10	Engines instruments	Parameters within green arcs
11	Rotation speed	Vr = 64 KIAS
12	Rotation and takeoff	
13	Apply slightly brakes to stop wheel	
	spinning	
14	Landing gear control knob	UP: check green lights and TRANS
		light turned OFF
15	Speed over obstacle	70KIAS
16	Flaps	0° at 300 ft (AGL)
21	Landing and taxi lights	OFF
17	Establish climb rate	Above 80 KIAS
18	Trim adjustment	
19	LH and RH Propeller Lever	Set at 2250 rpm (after reaching safe altitude)
20	LH and RH Electrical Fuel pump	BOTH OFF

CRUISE

Flights in the CIS airspace are allowed only along the routes with continuous ATC monitoring using RBS mode in VHF covering zones.

- Reach cruise altitude 1
- 2 Set throttle and rpm as required for the cruise
- LH and RH Propeller Lever SET to 1900-2400 rpm 3
- Trim As required
- Engine parameters check (LH and RH)
 - Oil temperature: *90*°*÷110* ° *C*.
 - 90° ÷ 110 °C • CHT:
 - Oil pressure: 2 - 5 bar.
 - $2.2 5.8 \, psi \, (0.15 0.40 \, bar)$ • Fuel pressure:
- Carburettor heat as needed (see also instructions addressed on Section 3) 6

BALKED LANDING

1	LH and RH Throttle Lever	FULL THROTTLE
2	LH and RH Propeller Lever	FULL FORWARD
3	Speed	Over 70 KIAS
4	Flaps	T/O
5	Landing gear	UP
6	Carburettor heat	CHECK OFF
7	LH and RH Electrical Fuel pump	CHECK ON

PERFORMANCES

TAKEOFF PERFORMANCES

Takeoff ground roll

CONDITIONS:

• Flaps: T/O

• Throttle levers: FULL FORWARD

Runway: paved

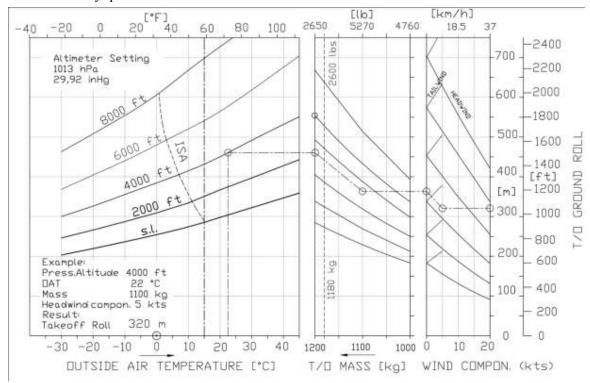


Figure 1 - Takeoff ground roll

In case of headwind, the takeoff run decreases by 2.5m for each knot of wind (8 ft/kt).

In case of tailwind, the takeoff run increases by 10m for each knot of wind (33 ft/kt).

Measurement distances for short grass (less than 2 inches) must be increased of 10% Measurement distances for high grass (more than 2 inches) must be increased of 15% A rising runway with a gradient of 1% causes an acceleration decreasing of the same intensity and, consequently, the takeoff run increases by 5%.

Takeoff distance

CONDITIONS:

• Flaps: T/O

• Throttle levers: FULL FORWARD

• Runway: paved

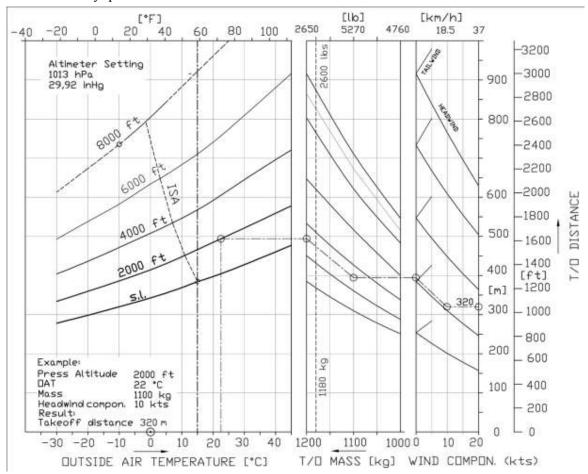


Figure 2 - Takeoff distance (50 ft. Obs)

In case of headwind, the takeoff run decreases by 4m for each knot of wind (13 ft/kt).

In case of tailwind, the takeoff run increases by 14m for each knot of wind (40 ft/kt).

Take off roll measurement distances for short grass (less than 2 inches) must be increased of 10%

Take off roll measurement distances for high grass (more than 2 inches) must be increased of 15%

A rising runway with a gradient of 1% causes a takeoff run increasing by about 4%.

CLIMB PERFORMANCE (ONE ENGINE INOPERATIVE)

CONDITIONS:

- AC Clean configuration
- One engine inoperative
- Max Cont. Power Airspeed:

Weight	\mathbf{V}_{SSE}	
[kg]	[KIAS]	
1180	80	
1080	78	
980	75	

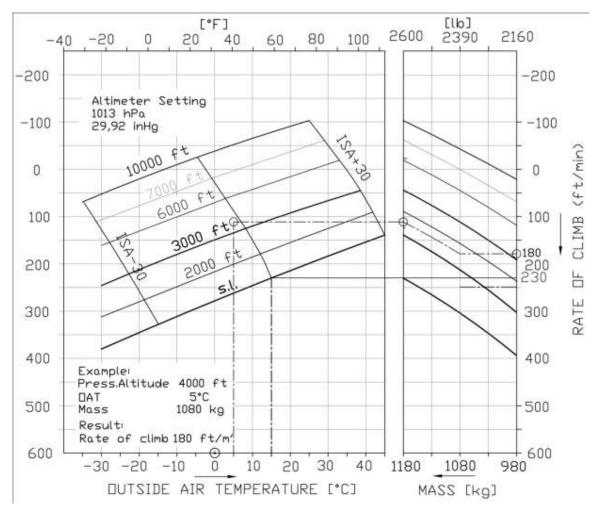
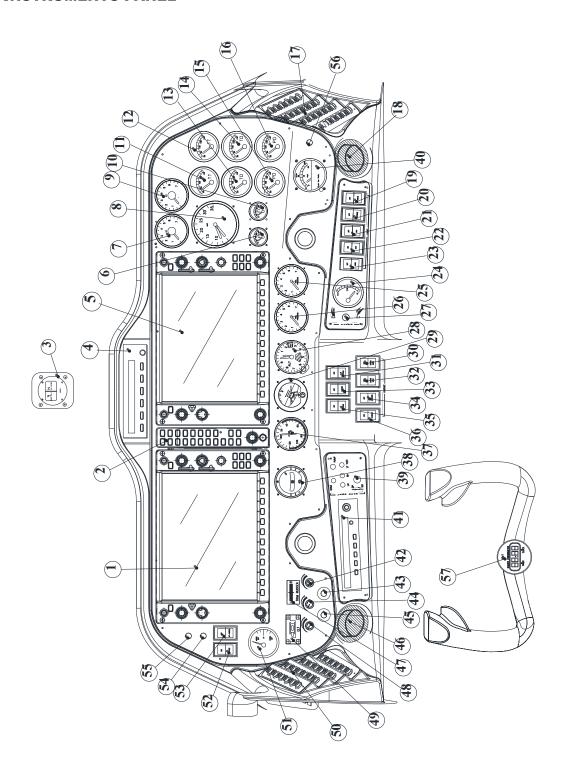


Figure 3 – Rate of Climb (one engine inoperative)

3rd Edition, Rev. 0


WEIGHT AND BALANCE

For weight and balance, make reference to Section 6 of this Manual.

SYSTEMS

INSTRUMENTS PANEL

Instruments panel (typical layout)

Item	Description	
1	GDU 1040 (PFD)	
2	GMA 1347	
3	Compass	
4	A/P Programmer/Computer	
5	GDU 1040 (MFD)	
6	LH fuel quantity indicator	
7	LH R.P.M.	
8	Dual M.A.P. indicator	
9	RH R.P.M.	
10	RH fuel quantity indicator	
11	LH CHT	
12	RH CHT	
13 LH Oil Temperature		
14 RH Oil Temperature		
15 LH oil pressure		
16 RH oil pressure		
17 RH breakers panel		
18 RH ram air inlet		
19	Instruments light switch	
20	Strobe light switch	
21	Navigation light switch	
22	Taxi light switch	
23	Landing light switch	
24	24 Position flaps indicator	
25	25 RH fuel pressure	
26	LH fuel pressure	
27	Flap switch	
28	Standby Altimeter	
29	Standby Attitude indicator	

Item	Description	
30	RH Cross bus switch	
31	RH Field	
32	LH Cross bus switch	
33	Master switch	
34	RH Avionic switch	
35	LH Field	
36	LH Avionic switch	
37	Standby Airspeed indicator	
38	Side slip indicator	
39	LG control knob	
40	Voltammeter Indicator	
41	ADF control panel	
42	Cockpit light dimmer	
43	Cabin heat (warm air from RH engine)	
44	44 Avionics lights dimmer	
45	Cabin heat (warm air from LH engine)	
46 LH ram air inlet		
47	47 Trim rudder indicator	
48	Switches built-in lights dimmer	
49	ELT Indicator	
50	RH breakers panel	
51	Pitch trim indicator	
52	52 Pitot heat switch	
53	53 A/P Master switch	
54	A/P trim master switch	
55	Fire Detector push-to-test	
56	LH/RH Ammeter selector switch	
57	Chronometer	

SUPPLEMENT NO. G8

BRAZILIAN AIRCRAFT FLIGHT MANUAL SUPPLEMENT

(EASA APPROVED)

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval or Under DOA
Kev	page	Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				

Note (*): this Supplement has been originally issued on 4 March 2011, after EASA Third Country Validation process completion.

List of Effective Pages

Page	Revision	Page	Revision
G8-1	Rev 0	G8-6	Rev 0
G8-2	Rev 0	G8-7	Rev 0
G8-3	Rev 0	G8-8	Rev 0
G8-4	Rev 0	G8-9	Rev 0
G8-5	Rev 0	G8-10	Rev 0

TABLE OF CONTENTS

INTRODUCTION	4
GENERAL	4
LIMITATIONS	5
Approved fuel	5
VHF/COMM system	5
GPS systems	
GPS operation (for airplanes with autopilot installed)	
GPS operation (for airplanes without autopilot installed)	
WAAS and SBAS functionalities:	
Placards in portuguese	

INTRODUCTION

This supplement applies for Brazilian registered aircraft.

GENERAL

Information contained herein complements the basic information in the EASA Approved Aircraft Flight Manual when the aircraft is registered in Brazil.

For limitations, procedures, and performance information not contained in this Supplement, refer to the basic Aircraft Flight Manual.

LIMITATIONS

APPROVED FUEL

APPROVED FUEL:

AVGAS 100 LL (ASTM D910)

Use of automotive gasoline (MOGAS) is not allowed for operation in Brazil.

Use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. Make reference to Rotax Maintenance Manual who provides dedicated checks due to the prolonged use of Avgas.

VHF/COMM SYSTEM

When operating the VHF/COMM system in Brazilian air space, the selection of the channel spacing of 8.33 kHz can cause the loss of communication with the Air Traffic Control (ATC).

GPS SYSTEMS

GPS OPERATION (FOR AIRPLANES WITH AUTOPILOT INSTALLED)

- Use of GPS for precision approach navigation mode is not allowed.
- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;
- Navigation using of the GPS system as the source of information is limited to IFR en route, terminal area and non-precision approach mode;
- During IFR in terminal area or non-precision approach using GPS, autopilot or flight director must be coupled to GPS.
- If RAIM function becomes unavailable in "en route" phase of flight, position must be verified every 15 minutes using other IFR approved navigation system;
- During IFR in terminal area or non-precision approach using GPS, in case RAIM function becomes unavailable, the GPS navigation must be discontinued;
- Before an IFR non-precision approach using GPS, the availability of the RAIM function must be checked to the time and place predicted (RAIM prediction). If predicted the unavailability of the RAIM function, navigation must be planned with others approved navigation systems;
- Before a non-precision approach using GPS, the database information must be compared with that in the approach chart, including transitions, position and altitude of waypoints;
- IFR non-precision approach using GPS must be based on the approved procedures of the equipment database. It cannot be done based on data manually included.

GPS OPERATION (FOR AIRPLANES WITHOUT AUTOPILOT INSTALLED)

- Use of GPS for precision approach navigation mode is not allowed.
- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;
- Use of GPS is prohibited for IFR in terminal area or in non-precision approach operations;
- If RAIM function becomes unavailable in en route phase of flight, position must be verified every 15 minutes using other IFR approved navigation system.

WAAS AND SBAS FUNCTIONALITIES:

The WAAS and SBAS functionalities are not available in Brazil and these functions are not tested or approved in Brazilian air space.

PLACARDS IN PORTUGUESE

Description	Placard	Place
Smoking ban	NÃO FUME	Instruments panel, right side
Engine oil level and specifications	TANQUE DE ÓLEO NÍVEL PARA VERIFICAÇÃO INVEL CLEO OMAXBLI OK OMAXBLI NÃO VOAR COM NÍVEL DE ÓLEO FORA DOS LIMITES USE SOMENTE ÓLEO COM CLASSIFICAÇÃO API SG OU MAIOR	On the engine nacelle, in correspondence of the engine oil reservoir access door
Fuel type and quantity	CAPACIDADE TOTAL UTULZ BARE	In correspondence of each fuel tank filler cap.
Baggage compartment capacity	CAPACIDADE MÁXIMA DO COMPARTIMENTO DE BAGAGEM 80kg/176lb OU 90 kg/m² - 19 lbs/sqft PRENDA A BAGAGEM COM A REDE DE CARGA ANTES DO VÔO	Baggage compartment (vertical panel)

Description	Placard	Place
Ditching emergency exit: opening instructions	SAIDA O VA POSTO VA P	Ditching emergency exit handle: external side
Ditching emergency exit: opening instructions	SAIDA ON OS NO SAIDA OS NO SAI	Ditching emergency exit handle: internal side
Door locking system: by- pass instruc- tions	PARA ACESSO DE EMERGÊNCIA 1. EMPURRE A TRAVA VERMELHA PARA BAIXO E SEGURE 2. ABRA A PORTA COM A MAÇANETA	Main door and emergency exit: external side
Door locking system: by- pass instruc- tions	PARA SAÍDA DE EMERGÊNCIA 1. EMPURRE A TRAVA VERMELHA PARA BAIXO E SEGURE 2. ABRA A PORTA COM A MAÇANETA	Main door and emergency exit: in- ternal side

Description	Placard	Place
Main door: exit instructions	ADVERTÊNCIA VERIFIQUE SE AS HELICES ESTÃO PARADAS ANTES DE ABRIR A PORTA SAIDA EM DIREÇÃO À FRENTE DA AERONAVE	Main door, internal side
Emergency exit label	SAÍDA DE EMERGÊNCIA	Emergency exit: internal and exter- nal side
Towing maximum turning angle	CUIDADO Ângulo de giro máximo do reboque 20° do centro para cada lado	Nose landing gear front door

SUPPLEMENT NO. G9

CHINESE AIRCRAFT FLIGHT MANUAL SUPPLEMENT

(EASA APPROVED)

Record of Revisions

Rev	Revised	Description of	Tecnam Approval		EASA Approval or Under DOA	
Kev	page	Revision	DO	OoA	HDO	Privileges
0	1	First issue	P. Violetti	M. Oliva	L. Pascale	Third Country Validation

List of Effective Pages

Page	Revision	Page	Revision
G9-1	Rev 0	G9-7	Rev 0
G9-2	Rev 0	G9-8	Rev 0
G9-3	Rev 0	G9-9	Rev 0
G9-4	Rev 0	G9-10	Rev 0
G9-5	Rev 0	G9-11	Rev 0
G9-6	Rev 0	G9-12	Rev 0

TABLE OF CONTENTS

INTRODUCTION	4
GENERAL	
LIMITATIONS	
Approved fuel	_
Placards in Chinese	
NORMAL OPERATIONS	_
Cold weather operations	_

INTRODUCTION

This supplement applies for Chinese registered aircraft.

GENERAL

Information contained herein complements the basic information in the EASA Approved Aircraft Flight Manual when the aircraft is registered in China.

For limitations, procedures, and performance information not contained in this Supplement, refer to the basic Aircraft Flight Manual.

LIMITATIONS

APPROVED FUEL

- MOGAS compliant with PRC National Standard GB17930-2006 Octane Rating (RON) 97
- MOGAS ASTM D4814
- MOGAS EN 228 Super/Super plus (min. RON 95)
- AVGAS 100 LL (ASTM D910)

Prolonged use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. It is therefore suggested to avoid using this type of fuel unless strictly necessary. Make reference to Rotax Maintenance Manual who provides dedicated checks due to the prolonged use of Avgas.

PLACARDS IN CHINESE

Description/Place	Placard	Chinese
Smoking ban.		禁止吸烟
Instruments panel, right side	NO SMOKING	
Engine oil level and specifications. On the engine nacelle, in correspondence of the engine oil reservoir access door	OIL TANK CHECK LEVEL OIL LEVEL OMAX 3Lt OK MIN 2Lt DO NOT FLY WITH OIL LEVEL OUT OF LIMITS USE ONLY OIL WITH API CLASSIFICATION SG OR HIGHER	滑油箱 检查油位 滑油油位 最大 3Lt OK 最低 2Lt 滑油油位超出限制时,禁止飞行。 只允许使用API规定的或更高级别的滑油。
Fuel type and quantity. In correspondence of each fuel tank filler cap.	OF LITTERS (25.6 U.S. CALS.) OF LITTERS (25.6 U.S. CALS.) OF LITTERS (25.6 U.S. CALS.)	GB17930 97号车用汽油—ASTM D4814车用汽油 航空汽油 100LL(ASTM D910)
Baggage compartment capacity. Baggage compartment (vertical panel)	MAX BAGGAGE LOAD 80kg/176lb MAX. SPEC. PRESS. 0.9 kg/dm² - 19 lbs/sqft FASTEN THE BAGGAGES WITH CARGO NET BEFORE FLIGHT	合计可用容量 最大行李载荷 80kg/176磅 最大规定压强 0.9 kg/dm2-19lbs/sqft 飞行前用行李网固定行李。

Description/Place	Placard	Chinese
Ditching emergency exit: opening instructions. Ditching emergency exit handle: internal side	CALL AND WELL ST.	水上迫降应急出口 1、旋转。 2、平稳向外推。
Ditching emergency exit: opening instructions. Ditching emergency exit handle: external side	L. ROHALLES AND THE STATE OF TH	水上迫降应急出口 1、旋转。 2、平稳向内拉。
Door locking system: by-pass instructions. Main door and emer- gency exit: external side	FOR EMERGENCY ACCESS 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	应急通道 1、按住红色扭。 2、用把手打开门。
Door locking system: by-pass instructions. Main door and emergency exit: internal side	FOR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	应急出口 1、按住红色扭。 2、用把手打开门。

Description/Place	Placard	Chinese
Main door; exit instructions. Main door, internal side	WARNING VERIFY PROPELLER STOPPED BEFORE OPENING DOOR EXIT TOWARDS FRONT OF AIRCRAFT	警告 打开门,向飞机前方撤离前,确认螺旋桨 已经停止转动。
Emergency exit label. Emergency exit: internal and external side	EMERGENCY EXIT	应急出口
Maximum steering angle. Front of the aircraft.	CAUTION TOWING MAXIMUM TURNING ANGLE: 20° EITHER SIDE OF CENTER	注意 牵引最大转弯角度:中立两侧20度。

INTENTIONALLY LEFT BLANK

NORMAL OPERATIONS

COLD WEATHER OPERATIONS

Engine cold weather operation

Refer to Rotax 912 Series Operators Manual, last issue, providing instructions for operating media (lubricant and coolant specifications) to be used in cold weather operation.

Parking

When the airplane is parked in cold weather conditions and it is expected to be soaked at temperatures below freezing, some precautions need to be taken.

Clear snow, slush, and ice in the parking area, or at least clear the area around the tires to prevent them from freezing to the ground. Apply plugs on Pitot and static ports.

The exposed airframe parts should be protected, especially the engines, the wheels, the blades and the gears against the snow or ice accumulation. Water and other freezable liquids should be removed from the airplane.

Standing water that could freeze should be removed from critical parts, as flaps and ailerons hinges, trim tabs hinges, drain points, LG doors, cabin doors etc.

With an ambient temperature of below -20°C, remove battery and store in a warm dry place; additionally in order to prevent a heavy discharge and to increase the battery life time, it is recommended to use an external power source for engine starting at temperatures lower than -15°C.

When wheel brakes come in contact with ice, slush, or snow with freezing conditions, the brake disk may freeze: park the aircraft with parking brake control knob in OFF position and ensure the aircraft is properly chocked and moored.

In any case, when the probability of ice, snow, or heavy frost is forecast, the use of a hangar is strongly recommended.

Preflight

Flight in expected and/or known icing conditions is forbidden.

An external inspection of the aircraft is performed before each flight, as prescribed on Section 4. For cold weather operations, the crew must focus on the check of following parts of airplane (free of snow/ice/standing water).

- control surfaces
- fuselage
- wings
- vertical and horizontal stabilator
- stall warning switch
- engine inlets
- engines draining points
- propeller blades
- LG doors
- Pitot, and static ports
- fuel tank vents

Tires show low pressure in cold weather: the required adjustments to inflation pressure should be performed on tires cooled to ambient temperature.

If the crew detects ice, anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

Removal of snow/ice accumulations is necessary prior to takeoff because they will seriously affect airplane performance. Aircraft with ice/snow accumulation are forbidden to flight.

If the aircraft must be operated in cold weather conditions within the range -25°C to -5°C, it is suggested to perform following procedure in order to speed up the engine warm-up:

- Tow the airplane in a warm hangar (at temperature more then -5°C).
- Let airplane temperature stabilize.
- Heat the cabin at a suitable value for crew comfort: an electrical fan heater can be used inside the cabin.
- Tow airplane outside and perform engine starting.

INTENTIONALLY LEFT BLANK

SUPPLEMENT NO. G11 - VLO/VLE INCREASE

RECORD OF REVISIONS

Rev	Revised	Description of Revision	Tecnam Approval			EASA Approval Or Under DOA
Kev	page		DO	OoA	HDO	Privileges
1	-	First issue	M. Landi	M. Oliva	L. Pascale	EASA approval 10041602

LOEP

Page	Revision	
G11-1	Rev 1	
G11-2	Rev 1	
G11-3	Rev 1	
G11-4	Rev 1	
G11-5	Rev 1	
G11-6	Rev 1	

INTRODUCTION

This Supplement applies to aircraft equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002) and provides supplemental information to increase the Vlo/Vle when the Tecnam Service Bulletin SB 098-CS or Design Change MOD 2006/033 has been embodied on the airplane.

The information contained herein supersedes the basic Aircraft Flight Manual.

SECTION 2 - LIMITATIONS

SPEED LIMITATIONS

On the left side instrument panel, above on the left, it is placed the following placard reporting the speed limitations:

Maximum L.G. op. speed

 $V_{LO}/V_{LE} = 122 \text{ KIAS}$

SUPPLEMENT NO. G12 - SOUTH AFRICAN AFM

(SACAA APPROVED)

Record of Revisions

Rev	Revised page	Description of Revision	Tecnam Approval			EASA Approval Or Under DOA
			DO	OoA	HDO	Privileges
0		First issue	G. Paduano	M. Landi	M. Oliva	See Note (*)

Note (*): this Supplement has been originally issued on 2 May 2013, after EASA Third Country Validation process completion.

LOEP

Page	Revision	Page	Revision
G12-1	Rev 0	G12-5	Rev 0
G12-2	Rev 0	G12-6	Rev 0
G12-3	Rev 0	G12-7	Rev 0
G12-4	Rev 0	G12-8	Rev 0

TABLE OF CONTENTS

INTRODUCTION	. 4
LIMITATIONS	
Maximum operating altitude	. 5
Inflight engine restart	
GPS systems	
GPS GNS 430 or GNS 530 operation (for airplanes with autopilot installed)	. 6
GPS GNS 430 or GNS 530 operation (for airplanes without autopilot installed)	
WAAS and SBAS functionalities:	

INTRODUCTION

This Supplement applies for South African registered aircraft

It contains supplemental information to the basic information approved in EASA aircraft Flight Manual when the aircraft is registered in South Africa.

For Limitations, procedures, and performance information not contained in this supplement, refer to the basic Aircraft Flight Manual.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable.

LIMITATIONS

MAXIMUM OPERATING ALTITUDE

Maximum operating altitude is 14000 ft (4260 m) MSL.

At altitudes between 10 000 feet (3048 m) and 12 000 feet (3658 m) for longer than 120 minutes intended flight time, or above 12 000 feet, the aircraft shall not be operated unless the aircrew is provided with the supplemental oxygen as prescribed in Document SA-CATS 91 and such oxygen may be used continuously whenever these circumstances prevail."

INFLIGHT ENGINE RESTART

The inflight engine restart procedure is reported on a placard (shown below) installed on the central console.

INFLIGHT ENGINE RESTART

1) Fuel Pump ON & normal engine starting

GPS SYSTEMS

GPS GNS 430 OR GNS 530 OPERATION (FOR AIRPLANES WITH AUTOPILOT INSTALLED)

- Use of GPS for precision approach navigation mode is not allowed.
- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;
- Navigation using of the GPS system as the source of information is limited to IFR en route, terminal area and non-precision approach mode;
- During IFR in terminal area or non-precision approach using GPS, autopilot or flight director must be coupled to GPS.
- If RAIM function becomes unavailable in "en route" phase of flight, position must be verified every 15 minutes using other IFR approved navigation system;
- During IFR in terminal area or non-precision approach using GPS, in case RAIM function becomes unavailable, the GPS navigation must be discontinued;
- Before an IFR non-precision approach using GPS, the availability of the RAIM function must be checked to the time and place predicted (RAIM prediction). If predicted the unavailability of the RAIM function, navigation must be planned with others approved navigation systems;
- Before a non-precision approach using GPS, the database information must be compared with that in the approach chart, including transitions, position and altitude of waypoints;
- IFR non-precision approach using GPS must be based on the approved procedures of the equipment database. It cannot be done based on data manually included.

GPS GNS 430 OR GNS 530 OPERATION (FOR AIRPLANES WITHOUT AUTOPILOT INSTALLED)

- Use of GPS for precision approach navigation mode is not allowed.
- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;
- Use of GPS is prohibited for IFR in terminal area or in non-precision approach operations;
- If RAIM function becomes unavailable in en route phase of flight, position must be verified every 15 minutes using other IFR approved navigation system.

WAAS AND SBAS FUNCTIONALITIES

The WAAS and SBAS functionalities are not available in South Africa and these functions are not tested or approved in South African air space.

SUPPLEMENT NO. G13 – ALTERNATORS WITH 70 A INSTALLATION

Record of Revisions

Rev	Revised page	Description of Revision	Tecnam Approval			EASA Approval Or Under DOA
			DO	OoA	HDO	Privileges
0	-	See Note (*)				

List of Effective Pages

Page	Revision	Page	Revision
G13-1	Rev 0	G13-6	Rev 0
G13-2	Rev 0	G13-7	Rev 0
G13-3	Rev 0		
G13-4	Rev 0		
G13-5	Rev 0		

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when 70A alternators are installed replacing the standard, 40A ones (Design Change MOD 2006/202).

The information contained herein supplements or supersedes the basic Aircraft Flight Manual: detailed instructions are provided to allow the owner for replacing the AFM pages containing information amended as per the Design Change in subject.

It is the owner's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

GENERAL

When 70A alternators are installed replacing the standard, 40A ones, the electrical system logic is not affected by any substantial change. Primary DC power is provided by two engine-driven alternators which, during normal operations, operate in parallel.

Each alternator is rated at 14,2-14,8 Vdc (through two external voltage regulators), 70 Amp and is provided with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by alternator's failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

SECTION 3 - EMERGENCY PROCEDURES

This section report some procedures which replace the same procedure in the basic AFM. The procedures affected from the replacement of existing 40A alternators with 70A are the following:

- Single alternator failure/overvoltage
- Both alternators failure
- Both alternators overvoltage

P2006T - Aircraft Flight Manual

Page G13-4

SINGLE ALTERNATOR FAILURE / OVERVOLTAGE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator

OR

R ALT FAIL	Rh Alternator
------------	---------------

FIELD LH (or RH) OFF
 FIELD LH (or RH) ON

If the LH (or RH) ALT caution stays displayed

3. FIELD LH (or RH)

OFF

NOTE

The battery and a single generator are able to supply the electrical power necessary for flight, but redundancy is lost.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC	

4. Land as soon as practicable

P2006T - Aircraft Flight Manual Page G13-5

BOTH ALTERNATORS FAILURE

Annunciation window	Alert window	
L ALT FAIL	Lh Alternator	
R ALT FAIL	Rh Alternator	

In event of both L and R ALT FAIL caution alerts displayed:

1. FIELD LH and RH BOTH OFF

2. FIELD LH and RH BOTH ON (one at a time)

If the LH (or RH) ALT caution stays displayed

- 1. Verify good ammeter indications on restored alternator
- 2. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH ALT cautions stay displayed

- 3. FIELD LH and RH **BOTH OFF**
- 4. CROSS BUS LH and RH **BOTH OFF**

If engine starting battery modification is applied

- 5. EMERG BATT switch ON
- 6. Land as soon as possible.

If engine starting battery modification is not applied

5. Land as soon as possible.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC	

The battery will supply electrical power for at least 30 minutes.

P2006T - Aircraft Flight Manual

Page G13-6

BOTH ALTERNATORS OVERVOLTAGE

Annunciation window	Alert window
L BUS VOLT HIGH	Lh overvoltage
R BUS VOLT HIGH	Rh overvoltage

In event of both L and R BUS VOLT HIGH warning alerts displayed:

1. FIELD LH and RH BOTH OFF

2. FIELD LH and RH BOTH ON (one at a time)

If the LH (or RH) BUS VOLT HIGH caution stays displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning stay displayed

3. CROSS BUS LH and RH BOTH OFF

4. FIELD LH and RH BOTH OFF

5. FIELD LH and RH BOTH ON (one at a time)

If LH (or RH) BUS VOLT HIGH warning stays displayed

- 6. Verify good ammeter indications on restored alternator
- 7. Switch CROSS BUS on the restored alternator side
- 8. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning stay displayed

7. FIELD LH and RH

BOTH OFF

If engine starting battery modification is applied

7. EMERG BATT switch

ON

8. Land as soon as possible.

If engine starting battery modification is not applied

8. Land as soon as possible.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC	

NOTE

The battery can supply electrical power for at least 30 minutes.

3rd Edition, Rev. 0

SUPPLEMENT NO. G14 - SMP FOR DIGITAL CONFIGURATION

RECORD OF REVISIONS

Rev		Description of	Tecnam Approval			EASA Approval Or Under DOA
		Revision	DO	OoA	HDO	Privileges
0	-	First issue	D. Ronca	C. Caruso	M. Oliva	DOA Approval

LOEP

	Pages	Revision
Cover pages	G14 – 1 thru 23	Rev. 0
Section 2	SMP2 – 3	Rev. 0
Section 3	SSMP3 – 3 thru 5	Rev. 0
	SSMP3 – 7 thru 9	Rev. 0
	SSMP3 – 21	Rev. 0
	SSMP3 – 29	Rev. 0
	SSMP3 – 36 thru 40	Rev. 0
	SSMP3 – 49 thru 53	Rev. 0
Section 4	SSMP4 – 26 thru 27	Rev. 0
Section 7	SSMP7 – 41	Rev. 0
	SSMP7 – 44 thru 47	Rev. 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002) and with Special Mission Platform. The Special Mission Platform refers to the following design changes:

- MOD2006/046 Power supply from built-in generators
- MOD2006/202 Replacement of existing 40A alternators with 70A
- MOD2006/204 Installation of converter box

For the two first design changes the supplements (n° G06 and G13) are already approved by EASA and in this supplement we report the same information for reference.

The Rotax engine built-in generators, one for each engine, feed two bus bars made available for end user equipment, when the design change 2006/046 is installed.

When 70A alternators are installed replacing the standard, 40A ones, the electrical system logic is not affected by any substantial change. Primary DC power is provided by two engine-driven alternators which, during normal operations, operate in parallel.

Each alternator is rated at 14,2-14,8 Vdc (through two external, first fuselage frame installed voltage regulators), 70 Amp and is provided with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by alternator's failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable: detailed instructions are provided to allow the owner for replacing the Basic AFM/Supplement G1 pages containing information amended as per the Design Changes in subject.

Usually, the Special Mission Platform P2006T is also equipped with holes in the cabin and/or tailcone, ready for third parties sensor's integration. While the Tecnam intent is to offer a platform ready for sensors' integration, it is end-user responsibility to receive the approval from authority for each equipment installation.

It is the owner's/operator's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

Supplement G14: pages replacement instructions

SECTION 1 – GENERAL

Apply following instruction:

See Basic AFM - Section 1

Supplement G14: pages replacement instructions

SECTION 2 – LIMITATIONS

Apply following pages replacement procedure:

Supplement G14 - LIMITATIONS page		Basic AFM Section 2 page	
SMP2 – 3	REPLACES	Page 2 – 3 of Basic AFM, Section 2	

1. Introduction

Section 2 includes operating limitations, instrument markings and basic placards necessary for safe operation of *P2006T* aircraft, its engines and standard systems and equipment.

LH and RH AUX FIELDS, enabling the converter box operations for Special Mission purposes, should be kept OFF during take-off, climb, landing and any abnormal procedure that affects electrical generating system (including single engine operation):

During Take-off, Climb, Landing and Single Engine Operations:

LH and RH AUX FIELD switches

BOTH OFF

NOTE

This limitation only applies when both 70Amp alternators and converter box are installed.

NOTE

Safety provisions, as following described, automatically disengage the LH and RH AUX FIELDS in case of one main field malfunction (i.e. for OEI). Also, if only one AUX FIELD switch is ON, the converter box is not powered.

Supplement G14: pages replacement instructions

SECTION 3 - EMERGENCY PROCEDURES

Apply following pages replacement procedure:

Supplement G14 - EMERGENCY PROCEDURES page		Supplement G1 Section 3 page
SSMP3 – 3 thru 5	REPLACE	Page S3 – 3 thru 5 of Supplement G1, Section 3
SSMP3 – 7 thru 9	REPLACE	Page S3 – 8 thru 11 of Supplement G1, Section 3
SSMP3 – 21	REPLACES	Page S3 – 21 of Supplement G1, Section 3
SSMP3 – 29	REPLACES	Page S3 – 29 of Supplement G1, Section 3
SSMP3 – 36 thru 40	REPLACE	Page S3 – 36 thru 40 of Supplement G1, Section 3
SSMP3 – 49 thru 53	REPLACE	Page S3 – 49 thru 53 of Supplement G1, Section 3

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION

1. Introduction

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

The procedures affected from installation of the Special Mission Platform are the following:

- Single alternator failure / overvoltage
- Both alternators failure
- Both alternators overvoltage
- Engine securing
- Total electrical failure
- Inflight engine restart
- Engine failure during takeoff run
- Engine failure during climb
- Engine failure in flight
- Engine fire on the ground
- Engine fire during takeoff run
- Engine fire in flight
- Electrical smoke in cabin on the ground
- Electrical smoke in cabin during flight

The main difference regarding aircraft systems, compared with the basic AFM, is the presence of the Power supply from built-in generators, Alternators with 70A and Converter Box. The powering and disconnection of converter box is very simple and, in most of abnormal cases, is automatically managed by relays and safety provisions.

The converter box (following described in Section 7) is managed by the pilot only via two switches, located in the bottom LH side of pilot seat on a single panel provided by: two switches, two breakers and two indicating lamps.

Only when pilot selects BOTH switches ON (right and left AUX) and both alternators are operative the system allows a surplus of power generated by the engines and alternators to flow into 4x converters and, then, into mission equipment, when installed.

The health status of converters inside the box (located into the baggage compartment) is monitored by mission operator, via 4x failure indicating lamps. Following the key concepts when managing converter boxes:

- 1. Mission Power Switches: they enable the converter box ONLY when BOTH are set to ON;
- 2. Converter box power: enabled only if both LH and RH main alternators are generating power;
- 3. Converter box: automatically switches OFF in case LH or RH main alternators is faulty / not generating;
- 4. Converter box: automatically switches OFF in case LH or RH mission switch is set to OFF;

5. Failure lamp: when illuminated, indicates that the correspondent converter is not working properly and needs to be replaced if the maximum available power from converter box is needed. When all converters are working properly, the system is capable to output 40A@28V. If one converter fails, 12A@28V are lost. For this reason, the end-user mission can continue if the equipment demand is less than 25/28A. On the contrary, the converter needs to be replaced.

Before operating the aircraft, the pilot/operator should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self study should be done.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1 ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

1. Throttle Lever

BOTH IDLE

2. Rudder

Keep heading control

- 3. --
- 4. --
- b. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

Additionally operating the aircraft, the pilot should become thoroughly familiar with the Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - and, in particular, with the present AFM Section.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

Garmin G950 has a very high degree of functional integrity. However, the pilot must recognize that providing monitoring and/or self-test capability for all conceivable system failures is not practical. Although unlikely, it may be possible for erroneous operation to occur without a fault indication shown by the G950. It is thus the responsibility of the pilot to detect such an occurrence by means of crosschecking with all redundant or correlated information available in the cockpit.

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SMP3-5

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

- 1. Keep self-control and maintain aircraft flight attitude and parameters
- 2. Analyse the situation identifying, if required, the area for a possible emergency landing
- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control as applicable

For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

NOTE

In this Chapter, following definitions apply:

Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured.

Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION

TECNAM P2006T - Aircraft Flight Manual Page SMP3-7

2.1. SINGLE ALTERNATOR FAILURE / OVERVOLTAGE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
	OR

R ALT FAIL Rh Alternator

1. FIELD LH (or RH) **OFF** 2. LH and RH AUX FIELD switch **BOTH OFF** 3. FIELD LH (or RH) ON

If the LH (or RH) ALT caution stays displayed

1. FIELD LH (or RH) OFF

If the LH (or RH) GENERATOR caution persists displayed

1. CROSS BUS LH (or RH)

OFF

2. Land as soon as practical.

NOTE

The battery and a single generator are able to supply the electrical power necessary for the entire mission, but redundancy is lost.

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

2.2 BOTH ALTERNATORS FAILURE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
R ALT FAIL	Rh Alternator

In event of both L and R ALT FAIL caution alerts displayed:

1.	FIELD LH and RH	BOTH OFF
2.	LH and RH AUX FIELD switch	BOTH OFF
3.	FIELD LH and RH	BOTHON

If both LH and RH ALT cautions stay displayed

FIELD LH and RH
 CROSS BUS LH and RH
 BOTH OFF
 BOTH OFF

If engine starting battery modification is applied

1. EMERG BATT switch ON

2. Land as soon as possible.

If engine starting battery modification is not applied

1. Land as soon as possible.

NOTE

The battery can supply electrical power for at least 30 minutes.

2.3 BOTH ALTERNATORS OVERVOLTAGE

Alert window
Lh overvoltage
Rh overvoltage

In event of both L and R BUS VOLT HIGH warning alerts displayed:

FIELD LH and RH
 LH and RH AUX FIELD switch
 BOTH OFF

3. FIELD LH and RH BOTH ON (one at a time)

if LH (or RH) OVERVOLT warning stays displayed

1. FIELD LH (or RH) OFF

if both LH and RH OVERVOLT warning stay displayed

1. CROSS BUS LH and RH BOTH OFF

2. FIELD LH and RH BOTH OFF

3. FIELD LH and RH BOTH ON (one at a time)

If LH (or RH) OVERVOLT warningt stays displayed

1. FIELD LH (or RH) OFF

2. CROSS BUS LH (or RH) ON

If both LH and RH OVERVOLT warning stay displayed

1. FIELD LH and RH BOTH OFF

2. CROSS BUS LH and RH BOTH OFF

If engine starting battery modification is applied

1. EMERG BATT switch ON

2. Land as soon as possible.

If engine starting battery modification is not applied

1. Land as soon as possible.

The battery can supply electrical power for at least 30 minutes.

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION

P2006T - Aircraft Flight Manual

Page SMP3-21

3. Engine securing

Following procedure is applicable to shut-down one engine in flight:

Throttle Lever
 Ignition
 Propeller Lever
 Fuel Selector
 Electrical fuel pump
 LH and RH AUX FIELD switch

IDLE
BOTH OFF
BOTH OFF
BOTH OFF

NOTE

If necessary, this procedure is applicable to both engines. When both engines are secured, both CROSS BUS switches must be set to OFF.

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT: see Para. 6.5

SINGLE GENERATOR FAILURE: see Para. 2.1 or BOTH GENERATOR FAILURE: see Para. 2.2

INFLIGHT ENGINE RESTART: see Para. 6.2

ONE ENGINE INOPERATIVE LANDING: see Para. 6.6 or LANDING WITHOUT ENGINE POWER: see Para. 10.1

Page SMP3-29

5. OTHER EMERGENCIES

5.1 EMERGENCY DESCENT

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15°.

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

1.	Power levers	IDLE
2.	Flaps	$U\!P$
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLE

5.2 TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON
2.	Standby attitude indicator switch	ON
3.	MASTER SWITCH	OFF
4.	FIELD LH and RH	BOTH OFF
5.	LH and RH AUX FIELD switch	BOTH OFF
6.	MASTER SWITCH	ON
7.	FIELD LH and RH	BOTH ON

If failure persists

9.	EMERG BATT switch	ON (if engine starting battery
		installed)

10. **Land as soon as possible** applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

TECNAM P2006T - Aircraft Flight Manual

Page SMP3-36

6.2 Inflight engine restart

After:

- mechanical engine seizure;
- fire;
- major propeller damage

engine restart is not recommended.

1. Carburettor heat *ON if required*

Electrical fuel pump
 Fuel quantity indicator
 CHECK

4. Fuel Selector CHECK (Crossfeed if required)

5. FIELD OFF

6. LH and RH AUX FIELD switch7. IgnitionBOTH ON

8. Operating engine Throttle Lever SET as practical

9. Stopped engine Throttle Lever *IDLE*

10. Stopped engine Propeller Lever FULL FORWARD

11. Start push-button *PUSH*

12. Propeller Lever SET at desired rpm

13. FIELD ON (check for positive ammeter)

14. Engine throttle levers SET as required

If engine restart is unsuccessful

15. EMERG BATT switch

ON (if starting battery installed)

16. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

- 17. Affected engine SECURE (see engine securing procedure Para. 3)
- 18. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

6.3 Engine failure during takeoff run

BEFORE ROTATION: ABORT TAKE OFF

1. Throttle Lever BOTH IDLE

2. Rudder Keep heading control

3. Brakes As required

When safely stopped:

Failed Engine Ignition
 Failed Engine Field
 LH and RH AUX FIELD switch
 Failed Engine Electrical fuel pump

OFF
OFF

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

8.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

Operating engine Throttle Lever
 Operating engine Propeller Lever
 FULL POWER
 FULL FORWARD

3. Heading Keep control using rudder and

ailerons

4. Attitude Reduce as appropriate to keep

airspeed over 62 KIAS

5. <u>Inoperative engine</u> Propeller Lever FEATHER

6. Landing gear control lever *UP*

7. Airspeed V_{XSE}/V_{YSE} as required

Flaps

9. LH and RH AUX FIELD switch BOTH OFF

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SMP3-39

6.4 ENGINE FAILURE DURING CLIMB

. Autopilot OFF

Heading Keep control using rudder and ailerons
 Attitude Reduce as appropriate to keep airspeed over 62 KIAS

Operating engine Throttle Lever
 Operating engine Propeller Lever
 Operative engine Electrical fuel pump
 LH and RH AUX FIELD switch
 Inoperative engine Propeller Lever
 FULL THROTTLE
FULL FORWARD
Check ON
BOTH OFF
 Inoperative engine Propeller Lever

9. <u>Inoperative engine</u> Confirm and SECURE

If engine restart is possible:

10. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- 11. Land as soon as possible
- 12. One engine inoperative landing procedure. see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

6.5 ENGINE FAILURE IN FLIGHT

1. Autopilot OFF

2. Heading Keep control using rudder and ailerons

3. Attitude Adjust as appropriate to keep airspeed over 62 KIAS

4. LH and RH AUX FIELD switch BOTH OFF

5. Operating engine *Monitor engine instruments*

6. Operative engine Electrical fuel pump Check ON

7. Operating engine Fuel Selector Check correct feeding (crossfeed if needed)

If engine restart is possible:

8. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

9. Land as soon as possible

10. One engine inoperative landing procedure. see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12. Rate of climb with One Engine Inoperative.

8 SMOKE AND FIRE OCCURRENCE

8.1 ENGINE FIRE ON THE GROUND

Fuel Selectors
 Ignitions
 LH and RH AUX FIELD switch
 Electrical fuel pumps
 Cabin heat and defrost
 MASTER SWITCH
 Parking Brake

BOTH OFF

OFF

ENGAGED

8. Aircraft Evacuation carry out immediately

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

8.2 Engine fire during takeoff run

BEFORE ROTATION: ABORT TAKE OFF

1. Throttle Lever BOTH IDLE

2. Rudder Keep heading control

3. Brakes As required

With aircraft under control

4. Fuel Selector BOTH OFF
5. Ignitions ALL OFF
6. LH and RH AUX FIELD switch BOTH OFF
7. Electrical fuel pump BOTH OFF
8. Cabin heat and defrost OFF
9. MASTER SWITCH OFF

11. Aircraft Evacuation carry out immediately

10. Parking Brake

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

ENGAGED

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed ($V_{\it YSE}$) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

Operating engine Throttle Lever FULL POWER
 Operating engine Propeller Lever FULL FORWARD

3. Heading Keep control using rudder and

ailerons

4. Attitude Reduce as appropriate to keep

airspeed over 62 KIAS

5. Fire affected engine Propeller Lever FEATHER

6. Landing gear control lever *UP*

7. Airspeed V_{XSE}/V_{YSE} as required

8. Flaps θ

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION

At safe altitude

9.	LH and RH AUX FIELD switch	<i>BOTH OFF</i>
10.	Cabin heat and defrost	BOTH OFF
11.	Fire affected engine Fuel Selector	Confirm and OFF
12.	Fire affected engine Ignitions	Confirm and ROTH OFF

13. Fire affected engine Electrical fuel pump Confirm and OFF

14. Fire affected engine FIELD *OFF*

15. Land as soon as possible applying one engine inoperative landing procedure.

See Para. 6.6

8.3 Engine fire in flight

Cabin heat and defrost
 LH and RH AUX FIELD switch
 BOTH OFF
 BOTH OFF

3. Autopilot OFF

4. Fire affected engine Fuel Selector Confirm and OFF

5. <u>Fire affected engine</u> Ignition *Confirm and BOTH OFF*

6. <u>Fire affected engine</u> Throttle Lever *Confirm and FULL FORWARD*

7. Fire affected engine Propeller Lever Confirm and FEATHER

8. Fire affected engine Electrical fuel pump OFF

9. Heading Keep control using rudder and ailerons 10. Attitude Adjust as appropriate to keep airspeed

over 62 KIAS

11. <u>Fire affected engine</u> Field OFF12. Cabin ventilation OPEN

13. Land as soon as possible applying one engine inoperative landing procedure.

See Para. 6.6

8.4 ELECTRICAL SMOKE IN CABIN ON THE GROUND

MASTER SWITCH
 Cabin heat and defrost
 OFF

3. LH and RH AUX FIELD switch
 4. Throttle Lever
 5. Ignitions
 6. Fuel Selector
 7. Parking Brake

BOTH OFF
BOTH OFF
ENGAGED

8. Aircraft Evacuation carry out immediately

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

8.5 ELECTRICAL SMOKE IN CABIN DURING FLIGHT

Cabin ventilation OPEN
 Emergency light ON
 Standby attitude indicator switch ON

4. Gain VMC conditions as soon as possible

In case of cockpit fire:

5. Fire extinguisher use toward base of flames

A tripped circuit breaker should not be reset.

If smoke persists, shed electrical supply in order to isolate faulty source by:

6. FIELD LH and RH
 7. LH and RH AUX FIELD switch
 8. AVIONICS LH and RH
 OFF

9. CROSS BUS LH and RH BOTH OFF

A fully charged battery can supply electrical power for at least 30 minutes.

If faulty source is found:

10. It may be possible to restore non faulty power sources (one at a time)

If smoke persists:

Before total electrical system shutdown consider gaining VMC condition, at night set personal emergency light on.

Only emergency light and emergency ADI will be electrically powered.

All radio COM and NAV, Landing Gear lever (normal mode) and indication lights, electrical trims and flaps will be unserviceable.

11. MASTER SWITCH

OFF

12. Land as soon as possible

Supplement G14: pages replacement instructions

SECTION 4 - NORMAL PROCEDURES

Apply following pages replacement procedure:

Supplement G14 - NORMAL PROCEDURES page		Supplement S1 Section 4 page
SSMP4 – 26 thru 27	REPLACE	Page S4 – 26 thru 27 of Supplement G1, Section 4

3.10 CRUISE

1 LH and RH Propeller Lever

SET to 1900-2250 RPM

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set be-CAUTION fore engine Throttle Levers are advanced.

- 2 Engine parameters check (LH and RH)
 - 90°÷110 ° C. • Oil temperature:
 - 90° ÷ 110 °C • CHT:
 - Oil pressure: 2 - 5 bar.
 - Fuel pressure: $2.2 - 5.8 \, psi$

 $*2.2 - 7.26 \, psi \, (0.15 - 0.50 \, bar)$

3 Carburettor heat as needed (see also instructions addressed on Section 3, Para. 7.4)

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

4 Fuel balance and crossfeed check as necessary

3.10.1 **CONVERTER BOX TURN ON**

LH and RH AUX FIELD 1

2 Converter Box Check enabled (no fail lamps)

3 Mission systems Use as required

3.10.2 **CONVERTER BOX TURN OFF**

1 Mission systems Shut down as necessary

2 LH and RH AUX FIELD **OFF**

Check OFF 3 Green lamps on switch panel

^{*}applicable for fuel pump part no.893110 and no.893114

3.11 TURBULENT AIR OPERATION

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups, which may occur as a result of the turbulence or of distractions caused by the conditions.

3.12 DESCENT AND APPROACH

1 Propellers Set to Max Continuous 2250 RPM

2 Carburettors heat As required

3 Altimeter setting *QNH set and crosscheck*

3.13 BEFORE LANDING

Rear passengers seats
 LH and RH Electrical Fuel pump
 Seats set at full aft and lower position
 BOTH ON

3 On downwind leg:

5

MTOW 1180kg	MTOW 1230 kg
V_{FE} = 119KIAS	V_{FE} =122KIAS

4 Speed below applicable VLO/VLE Landing gear control knob - DOWN -

Flaps T/O

Check green lights ON

Carburettors heat CHECK OFF

6 LH and RH Propeller Lever FULL FORWARD

7 On final leg: speed below 93 KIAS Flaps FULL

Final Approach Speed MTOW 1180kg MTOW 1230 kg $V_{APP} = 70KIAS \qquad V_{APP} = 71KIAS$

9 Landing and taxi light10 Touchdown speed65 KIAS

Page SMP4-27

Supplement G14: pages replacement instructions

SECTION 5 – PERFORMANCE

Apply following instruction:

See Basic AFM - Section 5

NOTE

Usually, the Special Mission Platform P2006T is also equipped with holes in the cabin and/or tailcone, ready for third parties sensor's integration. While the Tecnam intent is to offer a platform ready for sensors' integration, it is end-user responsibility to receive the approval from authority for each equipment installation, including the supplement of Section 5, should the equipment affect it (i.e. protruding cameras).

Supplement G14: pages replacement instructions

SECTION 6 - WEIGHT AND BALANCE

Apply following instruction:

See Basic AFM - Section 6

Supplement G14: pages replacement instructions

SECTION 7 – AIRFRAME AND SYSTEMS DESCRIPTION

Apply following pages replacement procedure:

Supplement G14 - AIRFRAME AND SYSTEMS DESCRIPTION page		Supplement S1 Section 7 page
SSMP7 – 41	REPLACES	Page S7 – 41 of Supplement G1, Section 7
SSMP7 – 44 thru 47	REPLACE	Page S7 – 44 thru 46 of Supplement G1, Section 7

18. ELECTRICAL SYSTEMS

Primary DC power is provided by two engine-driven alternators which, during normal operations, operate in parallel.

Each alternator is rated at 14,2-14,8 VDC, 70 Amp, and it is fitted with an external voltage regulator, which acts to maintain a constant output voltage, and with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by alternator failures.

The power rating of the each alternator is such that if one alternator fails the other one can still supply the airplane equipment to maintain flight safety.

Secondary DC power is provided by a battery (lead type - Gill Teledyne G35, 12 V, 23-Ah in 1h run time) and an external DC power source can be connected to the aircraft DC distribution system.

On the instruments panel, right side, it is installed a voltmeter/ammeter. The ammeter section can indicate the current supplied by either left or right alternator switching a dedicated selector.

There are five different busses (make reference to Figure 11):

- Battery bus
- LH Alternator bus
- RH Alternator bus
- LH Avionic bus
- RH Avionic bus

The distribution system operates as a single bus with power being supplied by the battery and both alternator but it is possible to separate the left busses from the right busses when required by means of the Cross Bus switches.

All electrical loads are divided among the five busses on the basis of their importance and required power: equipment with duplicate functions are connected to separate busses.

The Battery bus, which supplies the most important loads, is energized from three sources: the battery and both alternator. This allows the bus for remaining active also in case of two independent faults in the supply paths.

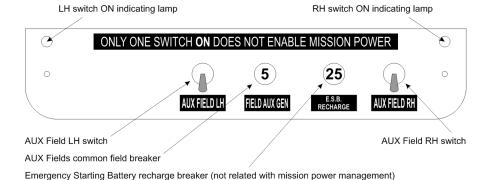
P2006T - Aircraft Flight Manual

The second ones allow, through a relay, for cutting off the power supply to the pertinent avionic bus.

When both generators are correctly operating and all above mentioned switches are in ON position, all the busses are connected to the generators.

The ignition switches, two for each engine and grouped on the over head panel, are instead independent from the airplane electrical system (generation and distribution); they only control and open the engine electrical circuit.

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.


18.1 MISSION POWER CONTROL

When the airplane embodies the design change "Power supply from built-in generators", the Rotax engine built-in generators are enabled in order to supply power to two available bus bars.

Each built-in generator is activated by means of a switch (LH and RH AUX FIELD) located on the LH breakers rack where are located also the breakers related to the auxiliary power generation system.

The light (switch built-in light) indicates that the electrical power is being generated

The below figure presents the control panel for the built-in generators which in turn activate the converter box:

Switches panels

Next paragraph describes the converter and connector box installed in the P2006T baggage compartment floor. This box allows the operator to have a source of 28Volt/40Amp electrical power for different mission equipment.

Page SMP7-44

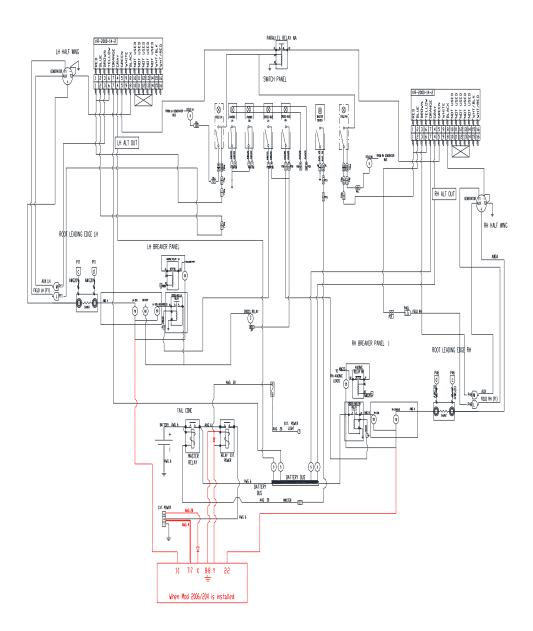
18.1.1 CONVERTER BOX

The following points illustrate how the converter box works:

- 1. A closed, light alloy made box incorporates 4x converters Ameri-King AK-550-12, each one capable of 12Amp/28VDC output using a 14VDC input;
- 2. Each converter is fed by one different power generation:
 - 20Amp coming directly from the LH aux generator bus;
 - 20Amp coming directly from the RH aux generator bus;
 - 30Amp coming from the LH external alternator bus;
 - 30Amp coming from the RH external alternator bus;
- 3. Each converter is protected with circuit breakers on the INPUT and OUT-PUT sides;
- 4. The 30Amp current coming from the LH and RH external alternators is the amount of power surplus available due to the 2006/202 design change;
- 5. The same switches shown in the MOD2006/046 and reported in the figure above enable the relays that feed the converters;
- 6. Four relays enable the external power to feed also the converter box for ground test purposes, when external socket is connected;
- 7. A connector box allows the end user to have a maximum current of 40Amp at 28VDC available (1120W).

NOTE

When using the ground power unit to test on-ground the mission equipment, remember that:


- 14VDC GPU only can be used, as done on standard P2006T.
- the minimum GPU capacity to properly feed mission equipment should be at least 150Amp @14VDC
- The FIELD AUX switches needs to be "ON" to test converter box connected equipment, "OFF" to test the aircraft avionics

NOTE

When connecting mission equipment to the system please note that he amount of current provided depends on engine rpm setting. The maximum electrical power is available from 1.900rpm on.

Page SMP7-45

In the following figures the new Electrical system schematic is reported.

Electrical system schematic (Page 1)

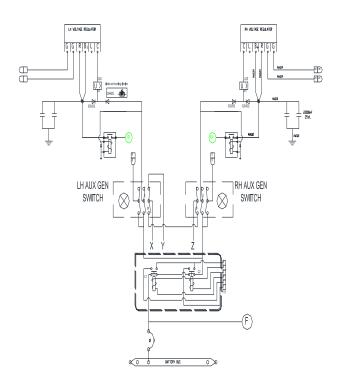
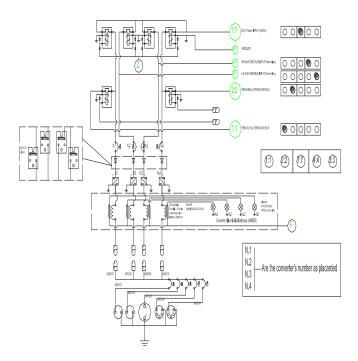



Figure 25 – Electrical system schematic (Page 2)

Electrical system schematic (Page 3)

Page SMP7-47

Supplement G14: pages replacement instructions

SECTION 8 - GROUND HANDLING & SERVICE

Apply following instruction:

See Basic AFM - Section 8

SUPPLEMENT NO. G16 - MD302 ALTERNATIVE STAND-BY INSTRUMENT

RECORD OF REVISIONS

Rev	Revised page	Description of Revision	Tecnam Approval			EASA Approval Or Under DOA
Kev			DO	OoA	HDO	Privileges
0	-	First issue	D. Ronca	C. Caruso	M. Oliva	DOA Approval

LOEP

	Pages	Revision
Cover pages	G16 – 1 thru 25	Rev. 0
Section 2	MD2 – 12	Rev. 0
Section 3	SMD3 – 15 thru 16	Rev. 0
	SMD3 – 30	Rev. 0
Section 4	SMD4 – 15	Rev. 0
Section 6	MD6 – 11	Rev. 0
Section 7	MD7 – 29	Rev. 0
	SMD7 – 37	Rev. 0
	SMD7 – 39	Rev. 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002) and with MD302. The MD302 refers to the following design change:

• MOD2006/212 - MD302 Alternative Stand-By Instrument

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable: detailed instructions are provided to allow the owner for replacing the Basic AFM/Supplement G1 pages containing information amended as per the Design Change in subject.

It is the owner's/operator's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

Supplement G16: pages replacement instructions

SECTION 1 – GENERAL

Apply following instruction:

See Basic AFM - Section 1

Supplement G16: pages replacement instructions

SECTION 2 – LIMITATIONS

Apply following pages replacement procedure:

Supplement G16 - LIMITATIONS page		Basic AFM Section 2 page
MD2 – 12	REPLACES	Page 2 – 12 of Basic AFM, Section 2

P2006T - Aircraft Flight Manual

11. POWERPLANT INSTRUMENTS MARKINGS

Powerplant instrument markings and their colour code significance are shown below:

Instrument		RED LINE Minimum limit	GREEN ARC Normal operating	YELLOW ARC Caution	RED LINE Maximum limit
Propeller	rpm		580 - 2265	2265 - 2388	2388
Oil temp.	°C	50	90 - 110	50 - 90 110 - 130	130
СТ	°C		50 – 120		120
CHT ¹	°C		50 – 135		135
Oil pressure	bar	0.8	2 - 5	0.8 - 2 5 - 7 ⁽²⁾	7
Fuel press.	psi	2.2	2.2 - 5.8 or 7.2 ³		5.8 or 7.2 ³
Fuel Q.ty	litres	0 ⁽⁴⁾			

12. OTHER INSTRUMENTS MARKINGS

Instrument	RED LINE Minimum limit	GREEN ARC Normal operating	YELLOW ARC Caution	RED LINE Maximum limit
Voltmeter	10.5 Volt	12 - 14 Volt		

If MOD2006/212 is embodied markings are unchanged so refer to the basic AFM for information.

EASA Approved

Ed.4, Rev.0

¹ applicable for Engines up to serial no. 4924543(included) and repaired engine which doesn't change the cylinder head n°3 with new one (part no. 413195)

²⁻ In event of cold starting operation, it is permitted a maximum oil pressure of 7 bar for a short period.

³⁻ only applicable for fuel pump part no. 893110 or 893114

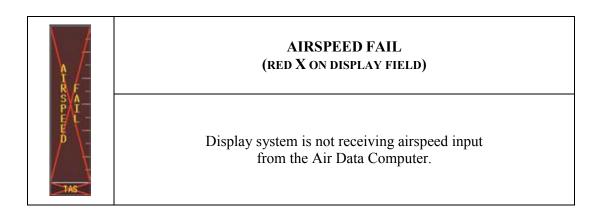
^{4 - &}quot;0" indication shows the unusable fuel quantity (2,8 litres for each fuel tank).

Supplement G16: pages replacement instructions

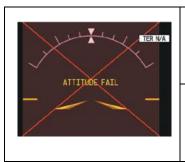
SECTION 3 - EMERGENCY PROCEDURES

Apply following pages replacement procedure:

Supplement G16 - EMERGENCY PROCEDURES page		Supplement S1 Section 3 page	
MD3 – 15 thru 16	REPLACE	Page 3 – 15 thru 16 of Supplement S1, Section 3	
MD3 – 30	REPLACES	Page 3 – 30 of Supplement S1, Section 3	


2.9 Loss of information displayed

When a LRU or a LRU function fails, a large red "X" is typically displayed on the display field associated with the failed data.


In most of cases, the red "X" annunciation is accompanied by a message advisory alert issuing a flashing ADVISORY Softkey annunciation which, once selected, acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window. Refer to G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00), last issue, Appendix A, Message Advisories list.

2.10 Loss of Airspeed Information

INSTRUCTION: revert to stand-by airspeed indicator

2.10 Loss of attitude information

ATTITUDE FAIL (RED X ON DISPLAY FIELD)

Display system is not receiving attitude information from the AHRS.

INSTRUCTION: revert to stand-by attitude indicator

2.11 Loss of altitude information

ALTITUDE FAIL (RED X ON DISPLAY FIELD)

Display system is not receiving altitude input from the Air Data Computer.

INSTRUCTION: revert to stand-by altitude indicator

5.3 MD 302 BATTERY FAILURE

The MD302 internal battery will recharge itself from aircraft power while in normal mode. A battery capacity check occurs each time the unit is powered on. If the battery capacity is determined to be less than 80%, there will be a battery pack warning. If the warning persists more than once in a short time the battery must be replaced.

5.4 STATIC PORTS FAILURE

In case of static ports failure, the alternate static port in the cabin (shown below) must be activated.

- 1. Cabin ventilation
- 2. ALTERNATE STATIC PORT VALVE
- 3. Continue the mission

OFF (hot and cold air)

OPEN

Supplement G16: pages replacement instructions

SECTION 4 – NORMAL PROCEDURES

Apply following pages replacement procedure:

Supplement G16 - NORMAL PROCEDURES page		Supplement S1 Section 4 page
SMD4 – 15	REPLACES	Page 4 – 15 Supplement S1, Section 4

GARMIN G950 IFDS - MD302 ALTERNATIVE STAND-BY INSTRUMENT

P2006T - Aircraft Flight Manual $^{\text{Page MD4-15}}$

MD302 system use

"The detailed description, operation and functionalities of MD302 Stand By Attitude Module are provided on MD302 Stand-By Attitude Module Pilot's Guide" document P/N 9017846 rev.D, which is to be considered to be attached to this AFM and kept onboard the aircraft.

Supplement G16: pages replacement instructions

SECTION 5 - PERFORMANCE

Apply following instruction:

See Basic AFM - Section 5

Supplement G16: pages replacement instructions

SECTION 6 - WEIGHT AND BALANCE

Apply following instruction:

Supplement G16 - WEIGHT AND BALANCE page		Basic AFM Section 6 page
MD6 – 11	REPLACES	Page 6 – 11 of Basic AFM, Section 6

P2006T - Aircraft Flight Manual

	EQUIPMENT LIST	AIRCRAFT S/N	DATE	:	
Ref.	DESCRIPTION	P/N	Inst	WEIGHT	ARM [M]
	INSTRUMENTATI	ON	l .	I I	
A1	GARMIN G950 IFDS				
A2	SOFTWARE SD CARD P/N				
A3	2 nd airspeed indicator – UMA T6-311 – 200			0.37	-1.4
A4	2 nd airspeed indicator - UMA T6-311 -			0.37	-1.4
A5	2 nd attitude indicator - Kelly Manufacturing RCA26AK-3			1	-1.4
A6	2 nd altimeter - Altimeter - United Instruments 5934PM- 3A84 01770028-05			0.6	-1.4
A7	Turn and bank indicator – RCA 83A-11			1.2	-1.4
A8	Mid-Continent MD302 stand-by instrument			0.73	-1.4
	AVIONICS & MISCELLA	4NEOUS	•		
В1	Garmin GNS-430W GPS/WAAS COMM/NAV			3	-1.4
B2	Garmin GNS-530W GPS/WAAS COMM/NAV			3,18	-1.4
В3	Garmin GMA340 audio panel			0.8	-1.4
B4	Garmin GMA347 audio panel			0.8	-1.4
В5	Garmin SL30 VHF COMM/NAV			1.3	-1.4
В6	Transponder-Garmin GTX328			1.9	-1.4
В7	Transponder-Garmin GTX330			1.5	-1.4
В8	Becker BXP 6401-2-(01) Mode S transponder			0.8	-1.4
В9	Vor/Loc/GS Indicator–Garmin GI106A			0.4	-1.4
B10	Vor/Loc/GS Indicator -MID Continental MD 200-306			0,4	-1,44
B11	Directional Gyro - Kelly Manufacturing RCA15AK-1			1	-1.4
B12	Directional Gyro - Kelly Manufacturing RCA15AK-16			1	-1.4
	HONEYWELL Bendix/King KCS 55A Compass System		•		
B13	KI 525A Pictorial Navigation Indicator			1.53	-1.4
B14	KG 102A Directional Gyro			1.95	1
B15	KA 51B Slaving Control and Compensator Unit			0.1	-1.4
B16	KMT 112 Magnetic Slaving Transmitter			0.15	2.2
	HONEYWELL Bendix/King ADF KR87 system:	<u> </u>	II.	1	
B17	ADF KR87 receiver			1.5	1
B18	Indicator KI 227			0.3	-1.4

Supplement G16: pages replacement instructions

SECTION 7 – AIRFRAME AND SYSTEMS DESCRIPTION

Apply following pages replacement procedure:

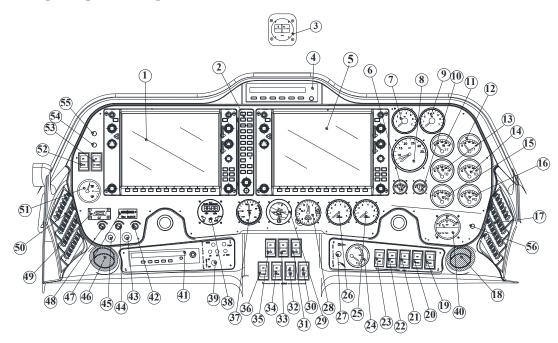
Supplement G16 - AIRFRAME AND SYSTEM DESCRIPTION page		Basis AFM/Supplement S1 Section 7 page
MD7 – 29	REPLACES	Page 7 – 29 of Basic AFM, Section 7
SMD7 – 37	REPLACES	Page 7 – 37 of Supplement S1, Section 7
SMD7 – 39	REPLACES	Page 7 – 39 of Supplement S1, Section 7

P2006T - Aircraft Flight Manual

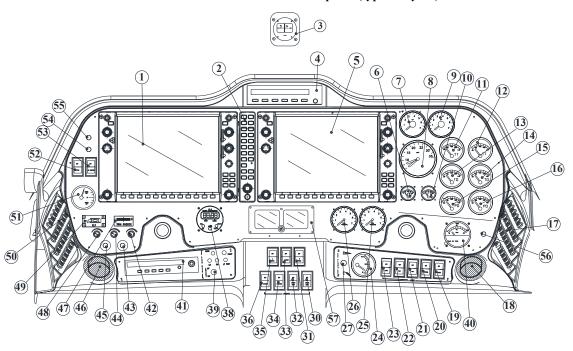
16. MD302 ALTERNATIVE STAND-BY INSTRUMENT

In order to improve the digital version cockpit layout of the P2006T in terms of human-machine interface, weight saving and reliability this backup instrument V.1.0.5 is installed.

For more details refer to MOD2006/212.



All MD302 Stand-by Attitude Module settings, set up during the aircraft delivery or after a maintenance activity, must not be modified.



In case of replacement of MD302 Stand-by Attitude Module, verify proper software load and confirm that its software version number is compliance with that one showed above, before install it.

17. INSTRUMENTS PANEL

GARMIN G950 IFDS - Instruments panel (typical layout)

GARMIN G950 IFDS - Instruments panel - layout with MD302 digital stand-by instrument(MOD2006/212)

Item	Description	
31	RH Field	
32	LH Cross bus switch	
33	Master switch	
34	RH Avionic switch	
35	LH Field	
36	LH Avionic switch	
37	Standby Airspeed indicator	
38	Chronometer	
39	LG control knob	
40	Voltammeter Indicator	
41	ADF control panel	
42	Cockpit light dimmer	
43	Cabin heat (warm air from RH engine)	
44	Avionics lights dimmer	
45	Cabin heat (warm air from LH engine)	
46	LH ram air inlet	
47	Trim rudder indicator	
48	Switches built-in lights dimmer	
49	ELT Indicator	
50	RH breakers panel	
51	Pitch trim indicator	
52	Pitot heat switch	
53	A/P Master switch	
54	A/P trim master switch	
55	Fire Detector push-to-test	
56	LH/RH Ammeter selector switch	
57	Mid-Continent MD302 Stand-By Instrument	

Supplement G16: pages replacement instructions

SECTION 8 – GROUND HANDLING & SERVICE

Apply following instruction:

See Basic AFM - Section 8

SUPPLEMENT NO. G17 - STORMSCOPE

RECORD OF REVISIONS

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA	
Kev	page	Revision	DO	OoA	HDO	Privileges	
0	-	First issue	D. Ronca	C. Caruso	M. Oliva	DOA Approval	

LOEP

	Pages	Revision
Cover pages	G17 – 1 thru 21	Rev. 0
Section 1	ST1 – 9	Rev. 0
Section 6	ST6 – 12	Rev. 0
Section 7	ST7 – 46	Rev. 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with WX500 Stormscope; this equipment refers to the following design change:

• MOD2006/216 – Stormscope installation

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable: detailed instructions are provided to allow the owner for replacing the Basic AFM/Supplement G1 pages containing information amended as per the Design Change in subject.

It is the owner's/operator's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

Supplement G17: pages replacement instructions

SECTION 1 – GENERAL

Apply following instruction:

See Basic AFM - Section 1

STORMSCOPE

P2006T - Aircraft Flight Manual

Page ST1-9

NOTE

The Stormscope does neither replace a weather radar nor weather information. The Stormscope is only used as an additional source of information beside approved weather information.

Supplement G17: pages replacement instructions

SECTION 2 – LIMITATIONS

Apply following instruction:

See Basic AFM and Supplement S1 - Section 2

SECTION 3 - EMERGENCY PROCEDURES

Apply following instruction:

See Supplement S1 - Section 3

SECTION 4 - NORMAL PROCEDURES

Apply following instruction:

See Supplement S1 - Section 4

SECTION 5 – PERFORMANCES

Apply following instruction:

SECTION 6 - WEIGHT AND BALANCE

Apply following instruction:

Supplement G17 - WEIGHT AND BALANCE page		Basic AFM Section 6 page
ST6 – 12	REPLACES	Page 6 – 12 of Basic AFM, Section 6

STORMSCOPE

P2006T - Aircraft Flight Manual

	EQUIPMENT LIST	AIRCRAFT S/N DATE:			
Ref.	DESCRIPTION	P/N	INST	W EIGHT [<i>kg]</i>	А RМ [м]
	AVIONICS & MISCELLANE	OUS (CONT'D)			
B19	Indicator KI 229			1.3	-1.4
B20	Static inverter Marathon PC-50			2	1
	HONEYWELL Bendix/King DME KN 63 system	T		1	
B21	Indicator DME KDI 572			0.4	-1.4
B22	Transceiver DME KN 63			1.3	1
	S-TEC Fifty Five X Autopilot System				
	Turn coordinator S-TEC 6405-14L			0.01	1 4
B23	(Mid Continent 1394T100-14RB)			0.81	-1.4
	Turn coordinator Mid Continent 1394T100-7Z			0.81	-1.4
B24	PRGMR/CMPTR 01192-0-2TF			1.36	-1.4
B25	Roll servo 0105-5-R9			1.31	-0.71
B26	Pitch servo 0107-11-P4			1.31	3.55
B27	Altitude Transducer 0111			0.2	-1.9
B28	Pitch Trim servo S-TEC 0105- T11			1.3	2.8
B29	ELT Adams Aviation Artex ME406			0.9	0.8
B30	LH Front and rear seat GEVEN E5-01-003-T01 or E5-01-007-T01 or E5-01-009-T03			9	0.893
B31	RH Front and rear seat GEVEN E5-01-004-T01 or E5-01-008-T01 or E5-01-010-T03			9	0.226
B32	Fire extinguisher Fire Fighting Enterprises Ltd BA51015-3			2	-1.5
B33	First aid kit Euroferramenta s.r.l. FIA270160			0.2	0.8
B34	Torch			0.15	-1.5
B35	Battery GILL35 - 13Volt - 23Ah			12.2	3.7
B36	ELT KANNAD 406			0.9	0.8
B37	Fire extinguisher H3R-Aviation RTA-600			0.8	-1.5
B38	Processor (including mounting tray)	805-11500-001		1,1	2,51
B39	Antenna NY163	805-10930-001		0,38	3,60

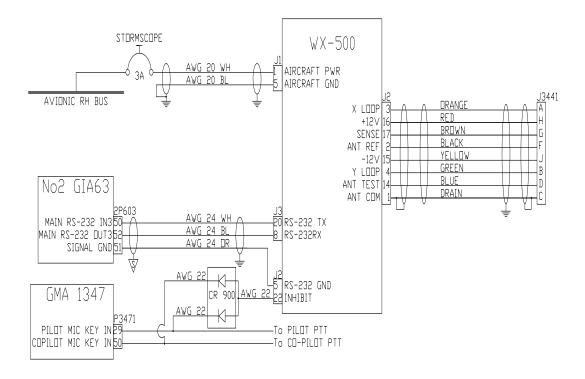
SECTION 7 – AIRFRAME AND SYSTEMS DESCRIPTION

Apply following instruction:

Supplement G17 - AIRFRAME AND SYSTEM DESCRIPTION page		Supplement S1 Section 7 page
ST7 – 46	REPLACES	Page 7 – 46 of Supplement S1, Section 7

19. WX500 STORMSCOPE SYSTEM

The thunderstorm detection passive sensor WX500 Stormscope is fully operated and displayed via the Garmin G950 Multi function display, in the map menu. Is is installed in order to shown the lightning data.


The sensor maps discharge the electrical activity for 360 degrees around the aircraft to a distance of 200 nautical miles, in relation to the aircraft's *Stormscope* antenna. The estimated distance from the aircraft to the discharge point is reported in NM while the bearing represents the angle between the fore and aft axis of the antenna, which is in line with the longitudinal axis (nose) of the aircraft.

The WX-500 processor is installed in the right side of the baggage compartment while the NY-163 antenna is installed on the bottom side of the tail.

For more details see WX-500 Installation Manual and the latest revision of the Garmin G950 Pilot's guide Doc. No.: 190-00726-00.

19.1 WIRING DIAGRAM - CABLE INTERCONNECTION

In the following figure the *Stormscope* wiring diagram is reported.

Wiring diagram

SECTION 8 - GROUND HANDLING & SERVICE

Apply following instruction:

SUPPLEMENT NO. G18 – OIL TEMPERATURE INDICATOR UPDATE

RECORD OF REVISIONS

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
Nev	page	Revision	DO	OoA	HDO	Privileges
0	-	First issue	D. Ronca	C. Caruso	M. Oliva	DOA Approval

LOEP

	Pages	Revision
Cover pages	G18 – 1 thru 22	Rev. 0
Section 2	OT2 – 12	Rev. 0
Section 4	SOT4 – 26	Rev. 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002) and with an update of the Oil temperature indicator. The update of the Oil temperature indicator refers to the following design change:

• MOD2006/280 - Oil temperature indicator update

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable: detailed instructions are provided to allow the owner for replacing the Basic AFM or the Supplement G1 pages containing information amended as per the Design Change in subject.

It is the owner's/operator's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

SECTION 1 - GENERAL

Apply following instruction:

SECTION 2 - LIMITATIONS

Apply following pages replacement procedure:

Supplement G18 - LIMITATIONS page		Basic AFM Section 2 page
OT2 – 12	REPLACES	Page 2 – 12 of Basic AFM, Section 2

P2006T - Aircraft Flight Manual

11. POWERPLANT INSTRUMENTS MARKINGS

Powerplant instrument markings and their colour code significance are shown below:

Instrum	1ENT	RED LINE Minimum limit	GREEN ARC Normal operating	YELLOW ARC Caution	RED LINE Maximum limit
Propeller	rpm		580 - 2265	2265 - 2388	2388
Oil temp.	°C	50	50 - 130		130
CT	°C		50 – 120		120
CHT ¹	°C		50 – 135		135
Oil pressure	bar	0.8	2 - 5	0.8 - 2 5 - 7 ⁽²⁾	7
Fuel press.	psi	2.2	2.2 - 5.8 or 7.2 ³		5.8 or 7.2 ³
Fuel Q.ty	litres	0 ⁽⁴⁾			

12. OTHER INSTRUMENTS MARKINGS

INSTRUMENT	RED LINE	GREEN ARC	YELLOW ARC	RED LINE
INSTRUMENT	Minimum limit	Normal operating	Caution	Maximum limit
Voltmeter	10.5 Volt	12 - 14 Volt		

EASA Approved

Ed.4, Rev.0

¹ applicable for Engines up to serial no. 4924543(included) and repaired engine which doesn't change the cylinder head n°3 with new one (part no. 413195)

²⁻ In event of cold starting operation, it is permitted a maximum oil pressure of 7 bar for a short period.

³⁻ only applicable for fuel pump part no. 893110 or 893114

^{4 - &}quot;0" indication shows the unusable fuel quantity (2,8 litres for each fuel tank).

SECTION 3 - EMERGENCY PROCEDURES

Apply following instruction:

SECTION 4 - NORMAL PROCEDURES

Apply following pages replacement procedure:

Supplement G18 - NORMAL PROCEDURES page		Supplement S1 Section 4 page	
SOT4 – 26	REPLACES	Page 4 – 26 of Supplement S1, Section 4	

P2006T - Aircraft Flight Manual Page SOT4-26

3.10 CRUISE

1 LH and RH Propeller Lever SET to 1900-2250 RPM

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set before engine Throttle Levers are advanced.

- 2 Engine parameters check (LH and RH)
 - Oil temperature: $50^{\circ} \div 130^{\circ} C$.
 - CHT: 90° ÷110 °C
 - Oil pressure: 2 5 bar.
 - Fuel pressure: 2.2 5.8 psi

*2.2 - 7.26 psi (0.15 - 0.50 bar)

3 Carburettor heat as needed (see also instructions addressed on Section 3, Para. 7.4)

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

4 Fuel balance and crossfeed check as necessary

To evaporate possibly accumulated condensation water, once per flight day (for approximately 5 minutes) 100° C (212° F) oil temperature must be reached.

3.11 TURBULENT AIR OPERATION

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups, which may occur as a result of the turbulence or of distractions caused by the conditions.

^{*}applicable for fuel pump part no.893110 and no.893114

SECTION 5 - PERFORMANCE

Apply following instruction:

SECTION 6 - WEIGHT AND BALANCE

Apply following instruction:

SECTION 7 - AIRFRAME AND SYSTEMS DESCRIPTION

Apply following instruction:

Page G18-20

SECTION 8 - GROUND HANDLING & SERVICE

Apply following instruction:

